Singularity and plurality of discourse reference to worlds

Muyi Yang

University of Connecticut
muyi.yang@uconn.edu

Semantics and Linguistic Theory 32
COLMEX/UNAM, Mexico City
June 10, 2022
1. Introduction

2. Data

3. Independent assumption: Q-adverbial vs. modal quantification

4. Analysis

5. Summary
Introduction

Conditionals have been standardly analyzed under Kratzer’s restrictor analysis.
Conditionals have been standardly analyzed under Kratzer’s restrictor analysis.

A recent alternative: **the referential analysis of conditionals** (Schlenker 2004 a.o.)
Conditionals have been standardly analyzed under Kratzer’s restrictor analysis.

A recent alternative: the referential analysis of conditionals (Schlenker 2004 a.o.)

(1) If Mary comes, John will come, too.
Conditionals have been standardly analyzed under Kratzer’s restrictor analysis.

A recent alternative: the referential analysis of conditionals (Schlenker 2004 a.o.)

(1) If Mary comes, John will come, too.

- Antecedent: definite description of the worlds where M comes;
Conditionals have been standardly analyzed under Kratzer’s restrictor analysis.

A recent alternative: the referential analysis of conditionals (Schlenker 2004 a.o.)

(1) If Mary comes, John will come, too.

- Antecedent: definite description of the worlds where M comes;
- Consequent: checks whether the referent will verify J’s coming.
Conditionals have been standardly analyzed under Kratzer’s restrictor analysis.

A recent alternative: the referential analysis of conditionals (Schlenker 2004 a.o.)

(1) If Mary comes, John will come, too.

- Antecedent: definite description of the worlds where M comes;
- Consequent: checks whether the referent will verify J’s coming.

Today: A common assumption that conditional antecedents are plural definite descriptions.

(e.g. Schein 2001; Schlenker 2004)
The plural view: Quantificational adverbs and *when*-clause restrictors

Compare:

(2) *When Anil died, his wife usually killed herself.*

⇒ *When*-clause describes a unique event.

(3) *When an Indian died, his wife usually killed herself.* (de Swart 1996)

⇒ *When*-clause describes multiple events.

⇒ Usually must be restricted by *when*-clauses that describe multiple events.

Hence the general constraint (de Swart 1996):

Quantificational adverbs (Q-adverbs) require non-singleton restrictors.
The plural view: Quantificational adverbs and when-clause restrictors

Compare: *Usually* + *when*-clauses
The plural view: Quantificational adverbs and *when*-clause restrictors

Compare: *Usually* + *when*-clauses

(2) *When* Anil died, his wife usually killed herself.

(3) When *an Indian* died, his wife usually killed herself. (de Swart 1996)
The plural view: Quantificational adverbs and *when*-clause restrictors

Compare: *Usually + when*-clauses

(2) *When Anil died, his wife usually killed herself.*
⇒ *When*-clause describes a unique event.

(3) When an Indian died, his wife usually killed herself. (de Swart 1996)
The plural view: Quantificational adverbs and *when*-clause restrictors

Compare: *Usually + when*-clauses

(2) *When Anil died, his wife usually killed herself.*
⇒ *When*-clause describes a **unique** event.

(3) When **an Indian** died, his wife usually killed herself. (de Swart 1996)
⇒ *When*-clause describes **multiple** events.
Compare: *Usually + when*-clauses

(2) *When Anil died, his wife usually killed herself.*
⇒ *When*-clause describes a **unique** event.

(3) When **an Indian** died, his wife usually killed herself.
(de Swart 1996)
⇒ *When*-clause describes **multiple** events.
⇒ *Usually* must be restricted by *when*-clauses that describe **multiple events**.
The plural view: Quantificational adverbs and *when*-clause restrictors

Compare: *Usually* + *when*-clauses

(2) *When Anil died, his wife usually killed herself.*
⇒ *When*-clause describes a **unique** event.

(3) When **an Indian** died, his wife usually killed herself. (de Swart 1996)
⇒ *When*-clause describes **multiple** events.

⇒ *Usually* must be restricted by *when*-clauses that describe **multiple events**.

Hence the general constraint (de Swart 1996):

Quantificational adverbs (Q-adverbs) require non-singleton restrictors.
The plural view: Q-adverbs and if-clause restrictors

Q-adverbs can also be restricted by English if-clauses (Lewis 1975):

(4) If Mary shows up, John usually shows up, too.
≈ 'Most situations where Mary comes are situations where John comes.'

Q-adverbs were shown to require restrictors that pick out non-singleton sets. By that, the if-clause of (4) also describes multiple events.

Standard assumption: If-clauses always refer to pluralities. (e.g. Schein 2001; Schlenker 2004):

in conditionals expressing adv. quantification (Q-adverbial conditionals);

as well as in those expressing modal quantification (modal conditionals):

(5) If Mary shows up, John might show up, too.
The plural view: Q-adverbs and *if*-clause restrictors

Q-adverbs can also be restricted by English *if*-clauses (Lewis 1975):
The plural view: Q-adverbs and *if*-clause restrictors

Q-adverbs can also be restricted by English *if*-clauses (Lewis 1975):

(4) If Mary shows up, John **usually** shows up, too.
The plural view: Q-adverbs and *if*-clause restrictors

Q-adverbs can also be restricted by English *if*-clauses (Lewis 1975):

(4) If Mary shows up, John *usually* shows up, too.
≈ ‘Most situations where Mary comes are situations where John comes.’
The plural view: Q-adverbs and *if*-clause restrictors

Q-adverbs can also be restricted by English *if*-clauses (Lewis 1975):

(4) If Mary shows up, John *usually* shows up, too.
 ≈ ‘Most situations where Mary comes are situations where John comes.’

Q-adverbs were shown to require restrictors that pick out non-singleton sets.
Q-adverbs can also be restricted by English *if*-clauses (Lewis 1975):

(4) If Mary shows up, John usually shows up, too.
\[\approx \text{‘Most situations where Mary comes are situations where John comes.’}\]

Q-adverbs were shown to require restrictors that pick out non-singleton sets.

By that, the *if*-clause of (4) also describes multiple events.
The plural view: Q-adverbs and *if*-clause restrictors

Q-adverbs can also be restricted by English *if*-clauses (Lewis 1975):

(4) If Mary shows up, John usually shows up, too.
 ≈ ‘Most situations where Mary comes are situations where John comes.’

Q-adverbs were shown to require restrictors that pick out non-singleton sets.

By that, the *if*-clause of (4) also describes multiple events.

Standard assumption: *If*-clauses *always refer to pluralities.*

(e.g. Schein 2001; Schlenker 2004):
The plural view: Q-adverbs and if-clause restrictors

Q-adverbs can also be restricted by English \textit{if-clauses} (Lewis 1975):

(4) If Mary shows up, John \textit{usually} shows up, too.
 ≈ ‘Most situations where Mary comes are situations where John comes.’

Q-adverbs were shown to require restrictors that pick out non-singleton sets.

By that, the \textit{if}-clause of (4) also describes multiple events.

Standard assumption: \textit{If-clauses always refer to pluralities.}

\hspace{1cm} (e.g. Schein 2001; Schlenker 2004):

\begin{itemize}
 \item in conditionals expressing adv. quantification (\textit{Q-adverbial conditionals});
\end{itemize}
The plural view: Q-adverbs and if-clause restrictors

Q-adverbs can also be restricted by English *if*-clauses (Lewis 1975):

(4) If Mary shows up, John *usually* shows up, too.
≈ ‘Most situations where Mary comes are situations where John comes.’

Q-adverbs were shown to require restrictors that pick out non-singleton sets.

By that, the *if*-clause of (4) also describes multiple events.

Standard assumption: *If*-clauses *always* refer to pluralities.

(e.g. Schein 2001; Schlenker 2004):

- in conditionals expressing adv. quantification (*Q-adverbial conditionals*);
- as well as in those expressing modal quantification (*modal conditionals*):
The plural view: Q-adverbs and *if*-clause restrictors

Q-adverbs can also be restricted by English *if*-clauses (Lewis 1975):

(4) If Mary shows up, John usually shows up, too.
 \[\approx \text{‘Most situations where Mary comes are situations where John comes.’}\]

Q-adverbs were shown to require restrictors that pick out non-singleton sets.

By that, the *if*-clause of (4) also describes multiple events.

Standard assumption: *If*-clauses always refer to pluralities.

(e.g. Schein 2001; Schlenker 2004):

- in conditionals expressing adv. quantification (Q-adverbial conditionals);
- as well as in those expressing modal quantification (modal conditionals):

(5) If Mary shows up, John might show up, too.
Mystery: Japanese has a conditional marker that is compatible only with modal conditionals and resists Q-adverbial conditionals. This challenges the assumption that the antecedents of both Q-adverbial and modal conditionals refer to plural objects. Main claim: Conditional antecedents can refer to singular referents.
Mystery: Japanese has a conditional marker that is compatible \textbf{only with} \textit{modal conditionals} and resists Q-adverbial conditionals.
Mystery: Japanese has a conditional marker that is compatible only with modal conditionals and resists Q-adverbial conditionals.

This challenges the assumption that the antecedents of both Q-adverbial and modal conditionals refer to plural objects.
Mystery: Japanese has a conditional marker that is compatible only with modal conditionals and resists Q-adverbial conditionals.

This challenges the assumption that the antecedents of both Q-adverbial and modal conditionals refer to plural objects.

Main claim: Conditional antecedents can refer to singular referents.
1. Introduction

2. Data

3. Independent assumption: Q-adverbial vs. modal quantification

4. Analysis

5. Summary
Conditionals in Japanese

Obligatorily marked by verbal suffixes/enclitics in the antecedent:

'If Mary comes, John also comes.'

The antecedent can sometimes also be accompanied by moshi:

(7) moshi moshi Mary-ga M-nom ku-reba, come-reba John-mo J-add kuru. come

'If Mary comes, John also comes.'
Obligatory marked by verbal suffixes/enclitics in the antecedent:
Obligatory marked by verbal suffixes/enclitics in the antecedent:

(6) *Mary-ga {ku-reba / ki-tara}, John-mo kuru.*

M-nom come-reba come-tara J-add come
‘If Mary comes, John also comes.’
Conditionals in Japanese

Obligatorily marked by verbal suffixes/enclitics in the antecedent:

(6) Mary-ga \{ku-reba / ki-tara\}, John-mo kuru.
 M-nom come-reba come-tara J-add come
 ‘If Mary comes, John also comes.’

The antecedent can sometimes also be accompanied by moshi:
Conditionals in Japanese

Obligatory marked by verbal suffixes/enclitics in the antecedent:

(6) Mary-ga \{ku-reba / ki-tara\}, John-mo kuru.
M-nom come-reba come-tara J-add come
‘If Mary comes, John also comes.’

The antecedent can sometimes also be accompanied by moshi:

(7) moshi Mary-ga ku-reba, John-mo kuru.
moshi M-nom come-reba J-add come
‘If Mary comes, John also comes.’
Q-adverbial conditionals in Japanese

With the Q-adverb `taitei` 'usually', Q-adverbial reading:

(8) hikouki-ni plane-dat nor-eba, get.on-reba taitei usually kibun-ga feeling-nom waruku bad naru.

'If I get on a plane, I usually feel sick.'

≈ Most situations where I get on a pln. are situations where I feel sick.

Moshi + taitei `usually`: Unacceptable (Kaufmann 2017a, credited to Ikumi Imani)

(9) ?? moshi moshi hikouki-ni plane-dat nor-eba, get.on-reba taitei usually kibun-ga feeling-nom waruku bad naru.

'If I get on a plane, I usually feel sick.'
With the Q-adverb *taitei* ‘usually’, Q-adverbial reading:
With the Q-adverb *taitei* ‘usually’, Q-adverbial reading:

(8) *hikouki-ni nor-eba, taitei kibun-ga waruku naru.*

‘If I get on a plane, I usually feel sick.’
Q-adverbial conditionals in Japanese

With the Q-adverb *taitei* ‘usually’, Q-adverbial reading:

(8)

\[\text{hikouki-ni nor-eba, taitei kibun-ga waruku naru.} \]

If I get on a plane, I usually feel sick.

\[\approx \] Most situations where I get on a pln. are situations where I feel sick.
With the Q-adverb *taitei* ‘usually’, Q-adverbial reading:

(8) *hikouki-ni nor-eba,* *taitei kibun-ga waruku naru.*

> plane-dat get.on-reba usually feeling-nom bad become

‘If I get on a plane, I usually feel sick.’

≈ Most situations where I get on a pln. are situations where I feel sick.

Moshi + taitei ‘usually’: Unacceptable

(Kaufmann 2017a, credited to Ikumi Imani)
With the Q-adverb *taitei* ‘usually’, Q-adverbial reading:

(8)
\[\text{hikouki-ni nor-eba, } \text{taitei kibun-ga waruku naru.} \]
\[\text{plane-dat get.on-reba usually feeling-nom bad become} \]
\[\text{‘If I get on a plane, I usually feel sick.’} \]
\[\approx \text{Most situations where I get on a pln. are situations where I feel sick.} \]

Moshi + taitei ‘usually’: Unacceptable
(Kaufmann 2017a, credited to Ikumi Imani)

(9)
\[\text{??moshi hikouki-ni nor-eba, } \text{taitei kibun-ga waruku naru.} \]
\[\text{moshi plane-dat get.on-reba usually feeling-nom bad become} \]
\[\text{‘If I get on a plane, I usually feel sick.’} \]
Modal conditionals in Japanese

(10)
{moshi moshi} John-ga J-nom ku-reba, come-reba Mary-mo M-add kuru come kamo-shirenai.

'might' 'If John shows up, Mary might show up, too.'

(11)
{moshi moshi} John-ga J-nom ku-reba, come-reba tabun maybe Mary-mo M-add kuru.

'maybe' 'If John shows up, maybe Mary will show up, too.'
Modal conditionals in Japanese

Moshi + modal operators: Acceptable
Modal conditionals in Japanese

Moshi + modal operators: Acceptable

(10) \{moshi / \emptyset\} John-ga ku-reba, Mary-mo kuru kamoshirenai.
 moshi J-nom come-reba M-add come might
 ‘If John shows up, Mary might show up, too.’
Modal conditionals in Japanese

Moshi + modal operators: Acceptable

(10) \{moshi / ∅\} John-ga ku-reba, Mary-mo kuru *kamoshirenai*.

moshi J-nom come-reba M-add come might
‘If John shows up, Mary might show up, too.’

moshi J-nom come-reba maybe M-add come
‘If John shows up, maybe Mary will show up, too.’
Moshi and covert operators

Generic conditionals have a covert GEN-operator that is similar to usually (Farkas and Sugioka 1983); Moshi is disallowed (Kaufmann 2017b):

\(\{\# \text{moshi} / \emptyset \} \text{ taiyou-ga sun-nom shizum-eba, sink-cond yoru-ni dat naru.} \)

'It becomes night if the sun goes down.'

Ambiguity between covert always and covert must:

\(\{\text{Mary-ga M-nom ku-reba, come-reba John-mo J-add kuru.} \}

'If Mary comes, John also comes.' All M-coming situations are J-coming situations. (covert always)

If M comes (tmr), it must be the case that J will come. (covert must)

With moshi, epistemic reading only:

\(\{\text{moshi moshi Mary-ga M-nom ku-reba, come-reba John-mo J-add kuru.} \}

'If M comes (tmr), it must be the case that J will come. (covert must)
Generic conditionals have a covert GEN-operator that is similar to usually (Farkas and Sugioka 1983);
Moshi and covert operators

- **Generic conditionals** have a covert GEN-operator that is similar to *usually* (Farkas and Sugioka 1983);
- Moshi is disallowed (Kaufmann 2017b):
Moshi and covert operators

- **Generic conditionals** have a covert GEN-operator that is similar to *usually* (Farkas and Sugioka 1983);

- *Moshi* is disallowed (Kaufmann 2017b):

(12) \[\{\#moshi / \emptyset\} taiyou-ga shizum-eba, yoru-ni naru. \]

\text{moshi} \hspace{1cm} \text{sun-nom} \hspace{1cm} \text{sink-cond} \hspace{1cm} \text{night-dat} \hspace{1cm} \text{become}

‘It becomes night if the sun goes down.’
Moshi and covert operators

- **Generic conditionals** have a covert GEN-operator that is similar to *usually* (Farkas and Sugioka 1983);

- **Moshi** is disallowed (Kaufmann 2017b):

\[
\begin{align*}
\{\#\text{moshi} / \emptyset\} & \text{ taiyou-ga shizum-eba, yoru-ni naru.} \\
\text{moshi} & \text{ sun-nom sink-cond night-dat become} \\
\text{‘It becomes night if the sun goes down.’}
\end{align*}
\]

- Ambiguity between **covert always** and **covert must**:

Moshi and covert operators

- **Generic conditionals** have a covert GEN-operator that is similar to *usually* (Farkas and Sugioka 1983);

- *Moshi* is disallowed (Kaufmann 2017b):

 \[
 \{\#moshi / \emptyset\} taiyou-ga shizum-eba, yoru-ni naru.
 \]
 moshi sun-nom sink-cond night-dat become
 ‘It becomes night if the sun goes down.’

- Ambiguity between **covert always** and **covert must**:

 \[
 Mary-ga ku-reba, John-mo kuru.
 \]
 M-nom come-reba J-add come
 ‘If Mary comes, John also comes.’

 All M-coming situations are J-coming situations. (covert always)
 If M comes (tmr), it must be the case that J will come. (covert must)
Moshi and covert operators

- **Generic conditionals** have a covert GEN-operator that is similar to *usually* (Farkas and Sugioka 1983);

- *Moshi* is disallowed (Kaufmann 2017b):

 \[
 \{\#\text{moshi} / \emptyset\} \text{taiyou-ga shizum-eba, yoru-ni naru.} \\
 \text{moshi sun-nom sink-cond night-dat become} \\
 \text{‘It becomes night if the sun goes down.’}
 \]

- Ambiguity between **covert always** and **covert must**:

 \[
 \text{Mary-ga ku-reba, John-mo kuru.} \\
 \text{M-nom come-reba J-add come} \\
 \text{‘If Mary comes, John also comes.’} \\
 \text{All M-coming situations are J-coming situations. (covert always)} \\
 \text{If M comes (tmr), it must be the case that J will come. (covert must)}
 \]

- With *moshi*, epistemic reading only:
Moshi and covert operators

- **Generic conditionals** have a covert GEN-operator that is similar to *usually* (Farkas and Sugioka 1983);

- Moshi is disallowed (Kaufmann 2017b):

 \[(12) \quad \{\#moshi / \emptyset\} \text{ taiyou-ga shizum-eba, yoru-ni naru.} \]

 \[
 \text{moshi sun-nom sink-cond night-dat become 'It becomes night if the sun goes down.'}
 \]

- Ambiguity between **covert always** and **covert must**:

 \[(13) \quad \text{Mary-ga ku-reba, John-mo kuru.} \]

 \[
 \text{M-nom come-reba J-add come 'If Mary comes, John also comes.'}
 \]

 All M-coming situations are J-coming situations. \text{(covert always)}

 If M comes (tmr), it must be the case that J will come. \text{(covert must)}

- With moshi, epistemic reading only:

 \[(14) \quad \text{moshi Mary-ga ku-reba, John-mo kuru.} \]

 \[
 \text{moshi M-nom come-reba J-add come 'If M comes (tmr), it must be the case that J will come.' (covert must)}
 \]
Taking stock

Q-adverbial conditionals were used to motivate the view that conditional antecedents refer to plural objects. Conditionals that contain moshi lack Q-adverbial readings. ⇒ Moshi-antecedents do not refer to plural referents. But why is moshi allowed in modal conditionals, then? What's the difference between Q-adverbial and modal conditionals such that moshi is allowed in modal conditionals, but not in Q-adverbial conditionals?
Q-adverbial conditionals were used to motivate the view that conditional antecedents refer to plural objects.
Q-adverbial conditionals were used to motivate the view that conditional antecedents refer to plural objects.

Conditionals that contain *moshi* lack Q-adverbial readings.
Q-adverbial conditionals were used to motivate the view that conditional antecedents refer to plural objects. Conditionals that contain moshi lack Q-adverbial readings.

⇒ Moshi-antecedents do not refer to plural referents.
Taking stock

- Q-adverbial conditionals were used to motivate the view that conditional antecedents refer to plural objects.
- Conditionals that contain moshi lack Q-adverbial readings.

⇒ *Moshi*-antecedents do not refer to plural referents.

But why is moshi allowed in modal conditionals, then?
Taking stock

- Q-adverbial conditionals were used to motivate the view that conditional antecedents refer to plural objects.
- Conditionals that contain *moshi* lack Q-adverbial readings.

⇒ *Moshi*-antecedents do not refer to plural referents.

But why is *moshi* allowed in modal conditionals, then?

What’s the difference between Q-adverbial and modal conditionals such that *moshi* is allowed in modal conditionals, but not in Q-adverbial conditionals?
1. Introduction

2. Data

3. Independent assumption: Q-adverbial vs. modal quantification

4. Analysis

5. Summary
Kratzer’s view on Q-adverbial and modal quantification

Both Q-adverbs and modals are restricted by conditional antecedents:

(15) If Mary comes, John sometimes comes, too.

\[\exists s [\text{mary-come}(s) \land \text{john-come}(s)] \]

(16) If Mary comes, John might come, too.

\[\exists w' [R_{\text{epi}} w' \& \text{mary-come}(w') \land \text{john-come}(w')] \]

But there's converging evidence that this construal for modals is incorrect.

(Frank 1996; Zvolenszky 2002 a.o.)
Kratzer’s view on Q-adverbial and modal quantification

Both Q-adverbs and modals are restricted by conditional antecedents:

(15) If Mary comes, John sometimes comes, too.

\[\exists s \left[\text{mary-come}(s) \right] \left[\text{john-come}(s) \right] \]

(16) If Mary comes, John might come, too.

\[\exists w' \left[w \in \text{Rep} w' \right] \left[\text{mary-come}(w') \right] \left[\text{john-come}(w') \right] \]

But there's converging evidence that this construal for modals is incorrect.

(Frank 1996; Zvolenszky 2002 a.o.)
Kratzer’s view on Q-adverbial and modal quantification

Both Q-adverbs and modals are restricted by conditional antecedents:

(15) If Mary comes, John sometimes comes, too.
Kratzer’s view on Q-adverbial and modal quantification

Both Q-adverbs and modals are restricted by conditional antecedents:

(15) If Mary comes, John sometimes comes, too.

\[\sim \exists s [\text{mary-come}(s)] [\text{john-come}(s)] \]
Kratzer’s view on Q-adverbial and modal quantification

Both Q-adverbs and modals are restricted by conditional antecedents:

(15) If Mary comes, John sometimes comes, too.
 ⇝ ∃s [mary–come(s)] [john–come(s)]

(16) If Mary comes, John might come, too.

(Frank 1996; Zvolenszky 2002 a.o.)
Kratzer’s view on Q-adverbial and modal quantification

Both Q-adverbs and modals are restricted by conditional antecedents:

(15) If Mary comes, John *sometimes* comes, too.
\[\leadsto \exists s \, [\text{mary-come}(s)] \, [\text{john-come}(s)]\]

(16) If Mary comes, John *might* come, too.
\[\leadsto \exists w' \, [w_0 R^{epi} w' \, \& \, \text{mary-come}(w')] \, [\text{john-come}(w')]\]
Both Q-adverbs and modals are restricted by conditional antecedents:

(15) If Mary comes, John \textit{sometimes} comes, too.
 \[\leadsto \exists s \left[\text{mary-come}(s) \right] \left[\text{john-come}(s) \right] \]

(16) If Mary comes, John \textit{might} come, too.
 \[\leadsto \exists w' \left[\text{\scriptsize{\textit{w@Rep}i} } w' \right] \left[\text{mary-come}(w') \right] \left[\text{john-come}(w') \right] \]

But there’s converging evidence that this construal for modals is incorrect.

(Frank 1996; Zvolenszky 2002 a.o.)
Evidence from deontic conditionals

If the new laws pass, salespeople will have to work longer. (Frank 1996)

Kratzer-style construal:

∀w′ [w@Rdeo w′ & law-pass (w′)] [work-longer (w′)]

Suppose at w@: Actual laws don't require work-longer; new laws would, but they haven't passed. Intuition: True. Prediction: False.

The necessity of work-longer gets evaluated w.r.t. the laws at w@; according to them, salespeople don't need to work longer.

Core assumption: Modals in conditionals are not restricted by antecedents, but evaluated pointwise at antecedent worlds (e.g. at each law-pass-world).
Evidence from deontic conditionals

(17) If the new laws pass, salespeople will have to work longer. (Frank 1996)
Evidence from deontic conditionals

(17) If the new laws pass, salespeople will have to work longer. (Frank 1996)

- Kratzer-style construal:

\[(18) \forall w' [w \in R_{de} \land \text{law-pass}(w')] [\text{work-longer}(w')]\]
Evidence from deontic conditionals

(17) If the new laws pass, salespeople will have to work longer. (Frank 1996)

- Kratzer-style construal:

\[\forall w' \left[w_@R^{deo} w' \land \text{law-pass}(w') \right] \left[\text{work-longer}(w') \right] \]

- Suppose at \(w_@ \): Actual laws don’t require work-longer; new laws would, but they haven’t passed.
Evidence from deontic conditionals

(17) If the new laws pass, salespeople will have to work longer. (Frank 1996)

- Kratzer-style construal:

(18) \(\forall w' [w@R^{deo}w' \& \text{law-pass}(w')] [\text{work-longer}(w')] \)

- Suppose at \(w_@ \): Actual laws don’t require work-longer; new laws would, but they haven’t passed.
 Intuition: True.
Evidence from deontic conditionals

(17) If the new laws pass, salespeople will have to work longer. (Frank 1996)

- Kratzer-style construal:

 (18) \(\forall w' \left[w_@ R^{deo} w' \land \text{law-pass}(w') \right] \left[\text{work-longer}(w') \right] \)

- Suppose at \(w_@ \): Actual laws don’t require work-longer; new laws would, but they haven’t passed.

 Intuition: True.

 Prediction: False.
Evidence from deontic conditionals

(17) If the new laws pass, salespeople will have to work longer. (Frank 1996)

- Kratzer-style construal:

(18) $\forall w' [w@R^{deo}w' \& \text{law-pass}(w')] [\text{work-longer}(w')]$

- Suppose at $w@$: Actual laws don’t require work-longer; new laws would, but they haven’t passed.

Intuition: True.

Prediction: False. The necessity of work-longer gets evaluated w.r.t. the laws at $w@$; according to them, salespeople don’t need to work longer.
Evidence from deontic conditionals

(17) If the new laws pass, salespeople will have to work longer. (Frank 1996)

- Kratzer-style construal:

 (18) $\forall w' \ [w@ R^{deo} w' \ & \ law-pass(w')] \ [work-longer(w')]$

- Suppose at $w@$: Actual laws don’t require work-longer; new laws would, but they haven’t passed.

 Intuition: True.

 Prediction: False. The necessity of work-longer gets evaluated w.r.t. the laws at $w@$; according to them, salespeople don’t need to work longer.

- (18): The criteria that we use to evaluate have to are independent of the content of the antecedent, i.e. law-pass.
Evidence from deontic conditionals

(17) If the new laws pass, salespeople will have to work longer. (Frank 1996)

- Kratzer-style construal:

 (18) \(\forall w' \ [w_R^{deo} w' & \text{law-pass}(w')] [\text{work-longer}(w')] \)

- Suppose at \(w_o \): Actual laws don’t require \text{work-longer}; new laws would, but they haven’t passed.

 Intuition: True.

 Prediction: False. The necessity of \text{work-longer} gets evaluated w.r.t. the laws at \(w_o \); according to them, salespeople don’t need to work longer.

- (18): The criteria that we use to evaluate have to are independent of the content of the antecedent, i.e. \text{law-pass}.

- What we need: \text{law-pass} should ‘feed into’ the criteria that we use to evaluate have to.
Evidence from deontic conditionals

(17) If the new laws pass, salespeople will have to work longer. (Frank 1996)

- Kratzer-style construal:

 (18) \[\forall w' [\text{w@} R^{\text{deo}} w' \& \text{law-pass}(w')] [\text{work-longer}(w')] \]

- Suppose at w@: Actual laws don’t require work-longer; new laws would, but they haven’t passed.

 Intuition: True.

 Prediction: False. The necessity of work-longer gets evaluated w.r.t. the laws at w@; according to them, salespeople don’t need to work longer.

- (18): The criteria that we use to evaluate have to are independent of the content of the antecedent, i.e. law-pass.

- What we need: law-pass should ‘feed into’ the criteria that we use to evaluate have to.

Core assumption:
Modals in conditionals are not restricted by antecedents, but evaluated pointwise at antecedent worlds (e.g. at each law-pass-world).
1. Introduction

2. Data

3. Independent assumption: Q-adverbial vs. modal quantification

4. Analysis

5. Summary
Framework: Intensional Plural Compositional DRT (Brasoveanu 2010)
Framework: Intensional Plural Compositional DRT (Brasoveanu 2010)

Four basic types:
Framework: Intensional Plural Compositional DRT (Brasoveanu 2010)

Four basic types:
- t: truth values
Framework: Intensional Plural Compositional DRT (Brasoveanu 2010)

Four basic types:

- t: truth values
- e: individuals

$I = \{i_1, i_2, i_3\}$
$u(i_3) = \text{bill}$
$p(i_3) = w_3$
Framework: Intensional Plural Compositional DRT (Brasoveanu 2010)

Four basic types:

- t: truth values
- e: individuals
- s: variable assignments

$\{i_1, i_2, i_3\}$
$u(i_3) = \text{bill}$
$p(i_3) = w_3$
Framework: Intensional Plural Compositional DRT (Brasoveanu 2010)

Four basic types:

- t: truth values
- e: individuals
- s: variable assignments
- w: situations; where maximal situations are possible worlds (Kratzer 1989)
Framework: Intensional Plural Compositional DRT (Brasoveanu 2010)

Four basic types:

- t: truth values
- e: individuals
- s: variable assignments
- w: situations; where maximal situations are possible worlds (Kratzer 1989)

Info(rmation) states are sets of variable assignments (cf. van den Berg 1996).
Framework: Intensional Plural Compositional DRT (Brasoveanu 2010)

Four basic types:
- t: truth values
- e: individuals
- s: variable assignments
- w: situations; where maximal situations are possible worlds (Kratzer 1989)

Info(rmation) states are sets of variable assignments (cf. van den Berg 1996).

Anaphoric reference is modeled using discourse referents (drefs):
Framework: Intensional Plural Compositional DRT (Brasoveanu 2010)

Four basic types:
- t: truth values
- e: individuals
- s: variable assignments
- w: situations; where maximal situations are possible worlds (Kratzer 1989)

Info(rmation) states are sets of variable assignments (cf. van den Berg 1996).

Anaphoric reference is modeled using discourse referents (drefs):
- Individual drefs: type $\langle s, e \rangle$,
Framework: Intensional Plural Compositional DRT (Brasoveanu 2010)

Four basic types:
- t: truth values
- e: individuals
- s: variable assignments
- w: situations; where maximal situations are possible worlds (Kratzer 1989)

Info(rmation) states are sets of variable assignments (cf. van den Berg 1996).

Anaphoric reference is modeled using discourse referents (drefs):
- Individual drefs: type $\langle s, e \rangle$,
- Situation drefs: type $\langle s, w \rangle$.
Framework: Intensional Plural Compositional DRT (Brasoveanu 2010)

Four basic types:
- t: truth values
- e: individuals
- s: variable assignments
- w: situations; where maximal situations are possible worlds (Kratzer 1989)

Info(rmation) states are sets of variable assignments (cf. van den Berg 1996).

Anaphoric reference is modeled using discourse referents (drefs):
- Individual drefs: type $\langle s, e \rangle$,
- Situation drefs: type $\langle s, w \rangle$.

<table>
<thead>
<tr>
<th>l</th>
<th>u</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>i_1</td>
<td>mary</td>
<td>w_1</td>
</tr>
<tr>
<td>i_2</td>
<td>john</td>
<td>w_2</td>
</tr>
<tr>
<td>i_3</td>
<td>bill</td>
<td>w_3</td>
</tr>
</tbody>
</table>

$l = \{i_1, i_2, i_3\}$

$u(i_3) = \text{bill}$

$p(i_3) = w_3$
Interpretation of sentences

Sentences denote relations between info states.

(19) Sentence ⇝ \[newdrefs | conditions \] := \(\lambda I \langle s, t \rangle . \lambda J \langle s, t \rangle . I [newdrefs] J \land conditions J \), or \[conditions \] := \(\lambda I \langle s, t \rangle . \lambda J \langle s, t \rangle . conditions J \).

Singularity condition: Requires the relevant dref to store exactly one value w.r.t. each info state.

(20) A \(\text{v} \) mouse came. It \(\text{v} \) laughed. ⇝ \[\text{v} | sing(\text{v}) \]; \[mouse \{ \text{v} \} \]; \[laughed \{ \text{v} \} \)
Interpretation of sentences

Sentences denote relations between info states.
Interpretation of sentences

Sentences denote relations between info states.

(19) Sentence \rightsquigarrow

$\text{[newdrefs | conditions]} := \lambda I_{⟨s,t⟩}.\lambda J_{⟨s,t⟩}.I[\text{newdrefs}] J \land \text{conditions} J$, or

$\text{Singularity condition: Requires the relevant dref to store exactly one value w.r.t. each info state.}$

(20) A $\text{mouse came. It laughed.}$

$\rightsquigarrow \text{[v | \text{sing}(v)]; [mouse \{v\}; [laughed \{v\}]})$
Interpretation of sentences

Sentences denote relations between info states.

(19) Sentence \rightsquigarrow

$[\text{newdrefs} \mid \text{conditions}] := \lambda I_{(s,t)} \cdot \lambda J_{(s,t)} \cdot I[\text{newdrefs}] \land \text{conditions} J$, or

$[\text{conditions}] := \lambda I_{(s,t)} \cdot \lambda J_{(s,t)} \cdot \text{conditions} J$

Singularity condition: Requires the relevant dref to store exactly one value w.r.t. each info state.

(20) A mouse came. It laughed.$\rightsquigarrow [\text{mouse}]^{v} \mid [\text{sing} (v)]^{v} \mid [\text{laughed}]^{v}$
Interpretation of sentences

Sentences denote relations between info states.

(19) Sentence \rightsquigarrow

$[\text{newdrefs} \mid \text{conditions}] := \lambda I_{s,t} \cdot \lambda J_{s,t} . I[\text{newdrefs}] J \land \text{conditions} J$, or
$[\text{conditions}] := \lambda I_{s,t} \cdot \lambda J_{s,t} . \text{conditions} J$

Singularity condition: Requires the relevant dref to store exactly one value w.r.t. each info state.
Interpretation of sentences

Sentences denote relations between info states.

(19) Sentence \rightsquigarrow

\[
\left[\text{newdrefs} \mid \text{conditions}\right] := \lambda I_{(s,t)} \cdot \lambda J_{(s,t)} . I[\text{newdrefs}] J \land \text{conditions} J, \text{ or }
\]

\[
\left[\text{conditions}\right] := \lambda I_{(s,t)} \cdot \lambda J_{(s,t)} . \text{conditions} J
\]

Singularity condition: Requires the relevant dref to store exactly one value w.r.t. each info state.

(20) Av mouse came. Itv laughed.
Interpretation of sentences

Sentences denote relations between info states.

(19) Sentence \leadsto
[conditions] := $\lambda I_{\langle s, t \rangle} \cdot \lambda J_{\langle s, t \rangle} \cdot I[\text{newdrefs}] J \land \text{conditions}_J$, or
[conditions] := $\lambda I_{\langle s, t \rangle} \cdot \lambda J_{\langle s, t \rangle} \cdot \text{conditions}_J$

Singularity condition: Requires the relevant dref to store exactly one value w.r.t. each info state.

(20) Av mouse came. Itv laughed.
\leadsto [v|sing(v)]; [mouse{v}]; [laughed{v}]

Interpretation of sentences

Sentences denote relations between info states.

(19) Sentence \rightsquigarrow

$[\text{newdrefs} \ | \ \text{conditions}] := \lambda I_{\langle s, t \rangle}. \lambda J_{\langle s, t \rangle}. I[\text{newdrefs}] J \land \text{conditions} J$, or

$[\text{conditions}] := \lambda I_{\langle s, t \rangle}. \lambda J_{\langle s, t \rangle}. \text{conditions} J$

Singularity condition: Requires the relevant dref to store **exactly one value** w.r.t. each info state.

(20) A^v mouse came. It$_v$ laughed.

\rightsquigarrow $[v | \text{sing}(v)]; \ [\text{mouse}\{v\}]; \ [\text{laughed}\{v\}]$

I_0

Interpretation of sentences

Sentences denote relations between info states.

(19) Sentence \rightsquigarrow

$$[\text{newdrefs | conditions}] := \lambda I_{(s,t)} \cdot \lambda J_{(s,t)} \cdot I[\text{newdrefs}] J \land \text{conditions} J,$$ or

$$[\text{conditions}] := \lambda I_{(s,t)} \cdot \lambda J_{(s,t)} \cdot \text{conditions} J$$

Singularity condition: Requires the relevant dref to store exactly one value w.r.t. each info state.

(20) A^v mouse came. Itv laughed.

$\rightsquigarrow [v|\text{sing}(v)]; [\text{mouse}\{v\}]; [\text{laughed}\{v\}]$

$$
\begin{array}{c}
\begin{array}{c}
 [v|\text{sing}(v)]
 \downarrow\downarrow\downarrow
 \begin{array}{c}
 i_1 \quad \text{jerry}
 \end{array}
 \downarrow\downarrow\downarrow
 \begin{array}{c}
 i_2 \quad \text{mickey}
 \end{array}
 \downarrow\downarrow\downarrow
 \begin{array}{c}
 i_3 \quad \text{tom}
 \end{array}

deletedtext
\end{array}
\end{array}
$$
Interpretation of sentences

Sentences denote relations between info states.

\[(19) \text{Sentence } \leadsto \]
\[\text{[newdrefs | conditions]} := \lambda I_{s,t} \cdot \lambda J_{s,t} \cdot I[\text{newdrefs}] J \land \text{conditions} J, \text{ or}
\[\text{[conditions]} := \lambda I_{s,t} \cdot \lambda J_{s,t} \cdot \text{conditions} J\]

Singularity condition: Requires the relevant dref to store exactly one value w.r.t. each info state.

\[(20) \text{A}^v \text{ mouse came. It}_v \text{ laughed. } \]
\[\leadsto [v|\text{sing}(v)]; [\text{mouse}\{v\}]; [\text{laughed}\{v\}]\]

\[
\begin{array}{ccc}
\begin{array}{|c|}
\hline
\end{array} & \[
\begin{array}{|c|}
\hline
i_1 & \text{jerry} \\
\hline
\end{array} & \[
\begin{array}{|c|}
\hline
i_2 & \text{mickey} \\
\hline
\end{array} & \[
\begin{array}{|c|}
\hline
i_3 & \text{tom} \\
\hline
\end{array} \\
\end{array}
\end{array}
\]

\[
\begin{array}{ccc}
\begin{array}{|c|}
\hline
\end{array} & \[
\begin{array}{|c|}
\hline
i_1 & \text{jerry} \\
\hline
\end{array} & \[
\begin{array}{|c|}
\hline
i_2 & \text{mickey} \\
\hline
\end{array} & \[
\begin{array}{|c|}
\hline
i_3 & \text{tom} \\
\hline
\end{array} \\
\end{array}
\end{array}
\]
Interpretation of sentences

Sentences denote relations between info states.

(19) Sentence ➞

\[\text{[newdrefs | conditions]} \equiv \lambda I_{(s,t)} \cdot \lambda J_{(s,t)} \cdot I[\text{newdrefs}] \land \text{conditions} J, \text{ or } \]

\[\text{[conditions]} \equiv \lambda I_{(s,t)} \cdot \lambda J_{(s,t)} \cdot \text{conditions} J \]

Singularity condition: Requires the relevant dref to store **exactly one value** w.r.t. each info state.

(20) \(A^v \) mouse came. \(\text{It}_v \) laughed.

\(\equiv [v | \text{sing}(v)]; \ [\text{mouse}\{v\}]; \ [\text{laughed}\{v\}] \)

\[\text{I}_0 \]

\[\text{I}' \]

\[\text{I}'' \]

\[\text{I}''' \]

\[\text{I}'''' \]

\[\text{I}''''' \]

\[\text{I}''' \]

\[\text{I}'''' \]

\[\text{I}''' \]
Introducing situation drefs: Default case
Introducing situation drefs: Default case

Conditional connectives introduce new drefs that store all situations verifying the antecedent proposition (Brasoveanu 2010 for English):
Introducing situation drefs: Default case

Conditional connectives introduce new drefs that store all situations verifying the antecedent proposition (Brasoveanu 2010 for English):

(21)

 a. If\(^q\) I get on a plane, ...

 b. \textit{hikouki-ni nor-reba}^q, ...

 plane-dat get.on-reba
Introducing situation drefs: Default case

Conditional connectives introduce new drefs that store all situations verifying the antecedent proposition (Brasoveanu 2010 for English):

(21)

a. \(\text{If}^q \text{ I get on a plane, ...} \)

b. \(\text{hikouki-ni nor-reba}^q, \ldots \)
 plane-dat get.on-reba

\(\rightsquigarrow \text{max}^q([\text{I-get-on-a-plane}_q]) \)
Conditional connectives introduce new drefs that store all situations verifying the antecedent proposition (Brasoveanu 2010 for English):

(21) a. If$_q$ I get on a plane, ...
 b. hikouki-ni nor-reba$_q$, ...
 plane-dat get.on-reba

\[\leadsto \max^q([I\text{-}get\text{-}on\text{-}a\text{-}plane_q]) \]
Introducing situation drefs: Default case

Conditional connectives introduce new drefs that store all situations verifying the antecedent proposition (Brasoveanu 2010 for English):

(21) a. If\(^q\) I get on a plane, ...
 b. *hikouki-ni nor-reba*\(^q\), ...

\[\sim \max^q([I\text{-}get\text{-}on\text{-}a\text{-}plane_\text{q}]) \]

\[
\begin{array}{c|c|c}
 & l_0 & \max^q([I\text{-}get\text{-}on\text{-}a\text{-}plane_\text{q}]) \\
 l & \text{q} & \text{w}
\end{array}
\]

\[\begin{array}{c|c}
 i_1 & w_1 \\
 i_2 & w_2 \\
 i_3 & w_3 \\
\end{array}\]
Introducing situation drefs: Singularity

Proposal:

Moshi is an overt marker of singularity:

(22)

moshi

p

moshi

hikouki-ni

plane-

dat

nor-reba

q

⊑

p

p

ride-

reba

...

‘If I get on a plane, ...’

⇝

[p | sing(p)];

max

q

⊑

p

([I-get-on-a-plane q])

It stores exactly one situation in each info state.

-Reba is anaphoric to moshi and stores a subset of the value stored by moshi.
Proposal: *Moshi* is an overt marker of singularity:
Introducing situation drefs: Singularity

Proposal: Moshi is an overt marker of singularity:

(22) \[m\text{oshi}^p \ h\text{i}k\text{ouki-ni} \ n\text{or-reba}^q_{\leq p}, \ldots \]
moshi plane-dat ride-reba
‘If I get on a plane, …’
Introducing situation drefs: Singularity

Proposal: *Moshi* is an overt marker of singularity:

(22) \(\text{moshi}^p \text{ hikouki-ni nor-reba}^q_p \subseteq p \), ...

`moshi` plane-dat ride-reba

‘If I get on a plane, …’

\(\rightsquigarrow [p|\text{sing}(p)]; \max^q_p ([\text{I-get-on-a-plane}_q]) \)
Introducing situation drefs: Singularity

Proposal: **Moshi** is an overt marker of singularity:

\[(22)\] \(\text{moshi}^p \text{ hikouki-ni nor-reba}_p^q \subseteq p, \ldots\)

moshi plane-dat ride-reba
‘If I get on a plane, …’

\(\sim \ [p|\text{sing}(p)]; \max^q \subseteq p([\text{I-get-on-a-plane}_q])\)

- It stores **exactly one situation** in each info state.
Introducing situation drefs: Singularity

Proposal: **Moshi** is an overt marker of singularity:

(22) \(moshi^p \) hikouki-ni nor-reba\(_p^q \subseteq p \), ...
 moshi plane-dat ride-reba
 ‘If I get on a plane, ...’
 \(\leadsto [p|\text{sing}(p)]; \max^q \subseteq p ([I-get-on-a-plane_q]) \)

- It stores **exactly one situation** in each info state.
- -Reba is anaphoric to moshi and stores a subset of the value stored by moshi.
Introducing situation drefs: Singularity

Proposal: *Moshi* is an overt marker of singularity:

(22) \(moshi^p \) hikouki-ni nor-reba\(q \subseteq p \), ...

moshi plane-dat ride-reba

‘If I get on a plane, ...’

\(\sim [p|\text{sing}(p)]; \max^q \subseteq p ([\text{I-get-on-a-plane}_q]) \)

- It stores **exactly one situation** in each info state.
- -Reba is anaphoric to *moshi* and stores a subset of the value stored by *moshi*.

\[
\begin{array}{c}
\begin{array}{c|c}
\text{l}_0 & \text{i}_1 \\
\hline
\end{array} \\
\begin{array}{c|c}
\text{l}' & \text{p} \\
\hline
\end{array} \\
\begin{array}{c|c}
\text{i}_1 & \text{w}_1 \\
\hline
\end{array} \\
\begin{array}{c|c}
\text{l}'' & \text{p} \\
\hline
\end{array} \\
\begin{array}{c|c}
\text{i}_2 & \text{w}_2 \\
\hline
\end{array} \\
\begin{array}{c|c}
\text{l}''' & \text{p} \\
\hline
\end{array} \\
\begin{array}{c|c}
\text{i}_3 & \text{w}_3 \\
\hline
\end{array} \\
\vdots
\end{array}
\]
Introducing situation drefs: Singularity

Proposal: **Moshi** is an overt marker of singularity:

(22) \(moshi^p \ hikouki-ni \ nor-reba^q_{p \sqsubseteq p} \), ...

\(\text{moshi} \ \text{plane-dat} \ \text{ride-reba} \)

‘If I get on a plane, ...’

\(\sim \ [p|\text{sing}(p)]; \max^q_{p}([\text{I-get-on-a-plane}_q]) \)

- **It stores exactly one situation** in each info state.
- **-Reba** is anaphoric to **moshi** and stores a subset of the value stored by **moshi**.

\[
\begin{array}{|c|c|c|}
\hline
& i' & p \\
\hline
i_1 & w_1 \\
\hline
\end{array}
\quad
\begin{array}{|c|c|c|}
\hline
& j' & p & q \\
\hline
j_1 & w_1 & w_1 \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|c|}
\hline
& i'' & p \\
\hline
i_2 & w_2 \\
\hline
\end{array}
\quad
\begin{array}{|c|c|c|}
\hline
& j'' & p & q \\
\hline
j_2 & w_2 & w_2 \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|c|}
\hline
& i''' & p \\
\hline
i_3 & w_3 \\
\hline
\end{array}
\quad
\begin{array}{|c|c|c|}
\hline
& j''' & p & q \\
\hline
j_3 & w_3 & w_3 \\
\hline
\end{array}
\]

\[\ldots \]
Introducing situation drefs: Singularity

Proposal: **Moshi is an overt marker of singularity:**

(22) \(\text{moshi}^p \text{hikouki-ni nor-reba}^q \subseteq_p, \ldots \)

moshi plane-dat ride-reba
‘If I get on a plane, …’

\(\rightsquigarrow [p|\text{sing}(p)]; \max^q \subseteq_p ([I-get-on-a-plane]) \)

- It stores **exactly one situation** in each info state.
- **Reba** is anaphoric to *moshi* and stores a subset of the value stored by *moshi*.

Singularity of \(p \) is inherited by \(q \) in each info state.
Q-adverbial conditionals: Basic implementation

Q-adverbs express a set relation between two drefs (e.g. usually $r \sqsubseteq q$)
an anaphorically retrieved dref q that stores restrictors,
a newly established dref r that stores nuclear scopes;
Due to conservativity, the nuclear scope dref is a structured subset (\sqsubseteq) of
the restrictor dref.

Q-adv cond'ls: restrictor drefs are provided by antecedents anaphorically.

(23) hikouki-ni plane-dat nor-reba q, get.on-reba $r \sqsubseteq q$,
usually kibun-ga feeling-nom waruku bad-naru.

(23) \Rightarrow max $q([I-get-on-a-plane q])$; max $r \sqsubseteq q([I-feel-sick r])$;
\[
\text{[MOST} \{q, r\}] \rightarrow q w_1 w_2 w_3 \leftarrow r w_1 w_2 w_3 \star
\]
\[
\text{[MOST} \{q, r\}] \rightarrow q r w_1 w_2 w_3 \star
\]
(\star is a dummy situation that falsifies all propositions)
Q-adverbial conditionals: Basic implementation

Q-adverbs express a set relation between two drefs (e.g. $\textit{usually}^q_r \subseteq q$)
Q-adverbial conditionals: Basic implementation

Q-adverbs express a set relation between two drefs (e.g. \(\text{usually}_{q \sqsubseteq r} \))

- an anaphorically retrieved dref \(q \) that stores restrictors,
Q-adverbial conditionals: Basic implementation

Q-adverbs express a set relation between two drefs (e.g. usually\(q \sqsubseteq r \))

- an anaphorically retrieved dref \(q \) that stores restrictors,
- a newly established dref \(r \) that stores nuclear scopes;
Q-adverbial conditionals: Basic implementation

Q-adverbs express a set relation between two drefs (e.g. $usually^r_{q \sqsubseteq q}$)

- an anaphorically retrieved dref q that stores restrictors,
- a newly established dref r that stores nuclear scopes;
- Due to conservativity, the nuclear scope dref is a structured subset (\sqsubseteq) of the restrictor dref.

(23) hikouki-ni plane-dat nor-reba q, get.on-reba taitei $r \sqsubseteq q$ usually kibun-ga feeling-nom waruku bad become
'If I get on a plane, I usually feel sick.'

(23) \Rightarrow max $q\{ [I-get-on-a-plane q]; max r \sqsubseteq q\{ [I-feel-sick r] \}; MOST{q, r}\}$

max $q\{ [I-go-plane q] \} \longrightarrow w_1 w_2 w_3$

max $r \sqsubseteq q\{ [I-feel-sick r] \} \longrightarrow w_1 w_2 w_3 \ast$

(\ast is a dummy situation that falsifies all propositions)
Q-adverbial conditionals: Basic implementation

Q-adverbs express a set relation between two drefs (e.g. $usually^q_r$)

- an anaphorically retrieved dref q that stores restrictors,
- a newly established dref r that stores nuclear scopes;
- Due to conservativity, the nuclear scope dref is a structured subset (\subseteq) of the restrictor dref.

Q-adv cond’ls: **restructor drefs are provided by antecedents** anaphorically.
Q-adverbial conditionals: Basic implementation

Q-adverbs express a set relation between two drefs (e.g. \(\texttt{usually}_q^r \))

- an anaphorically retrieved dref \(q \) that stores restrictors,
- a newly established dref \(r \) that stores nuclear scopes;
- Due to conservativity, the nuclear scope dref is a structured subset (\(\sqsubseteq \)) of the restrictor dref.

Q-adv cond’ls: restrictor drefs are provided by antecedents anaphorically.

(23) \(\texttt{hikouki-ni nor-reba}^q, \texttt{taitei}^r_q \texttt{kibun-ga waruku naru.} \)
plane-dat get.on-reba usually feeling-nom bad become
‘If I get on a plane, I usually feel sick.’
Q-adverbial conditionals: Basic implementation

Q-adverbs express a set relation between two drefs (e.g. \(\text{usually}_q \subseteq_q \))
- an **anaphorically retrieved dref** \(q \) that stores restrictors,
- a **newly established dref** \(r \) that stores nuclear scopes;
- Due to conservativity, the nuclear scope dref is a structured subset (\(\subseteq \)) of the restrictor dref.

Q-adv cond’ls: **restrictor drefs are provided by antecedents** anaphorically.

(23)
\[\text{hikouki-ni nor-reba}^q, \text{taitei}^r \subseteq_q \text{kibun-ga waruku} \text{naru.} \]
plane-dat get.on-reba usually feeling-nom bad become
‘If I get on a plane, I usually feel sick.’

(23) \(\leadsto \max^q([\text{I-get-on-a-plane}_q]); \max^r \subseteq_q ([\text{I-feel-sick}_r]); [\text{MOST}\{q, r\}] \)
Q-adverbial conditionals: Basic implementation

Q-adverbs express a set relation between two drefs (e.g. \(usually^r_q \))
- an anaphorically retrieved dref \(q \) that stores restrictors,
- a newly established dref \(r \) that stores nuclear scopes;
- Due to conservativity, the nuclear scope dref is a structured subset \((\subseteq)\) of the restrictor dref.

Q-adv cond’ls: restrictor drefs are provided by antecedents anaphorically.

(23) \textit{hikouki-ni nor-reba}^q, \textit{taitei}^r_q \textit{kibun-ga} \textit{waruku} \textit{naru}.

\text{plane-dat get.on-reba usually feeling-nom bad become}
\text{‘If I get on a plane, I usually feel sick.’}

(23) \(\leadsto \max^q([I-get-on-a-plane_q]); \max^r_q([I-feel-sick_r]); [\text{MOST}\{q, r\}] \)

\[
\begin{array}{c}
\max^q([I-g.o.-plane_q])
\end{array} \rightarrow
\begin{array}{c}
q \\
\downarrow
\begin{array}{c}
w_1 \\
w_2 \\
w_3
\end{array}
\end{array}
\]
Q-adverbial conditionals: Basic implementation

Q-adverbs express a set relation between two drefs (e.g. *usually*\(_q^{r \subseteq q}\))

- an anaphorically retrieved dref *q* that stores restrictors,
- a newly established dref *r* that stores nuclear scopes;
- Due to conservativity, the nuclear scope dref is a structured subset (\(\subseteq\)) of the restrictor dref.

Q-adv cond’ls: **restrictor drefs are provided by antecedents** anaphorically.

\[(23) \quad \text{hikouki-ni nor-reba}^q, \text{taitei}^r_q \subseteq q \text{ kibun-ga waruku naru.} \]

plane-dat get.on-reba usually feeling-nom bad become
‘If I get on a plane, I usually feel sick.’

\[(23) \quad \leadsto \max^q([I\text{-get-on-a-plane}_q]); \max^r \subseteq q([I\text{-feel-sick}_r]); [\text{MOST}\{q, r\}] \]

\[\begin{array}{c}
\text{max}^q([I\text{-g.o.-plane}_q]) \\
\text{max}^r \subseteq q([I\text{-feel-sick}_r])
\end{array}\]
Q-adverbial conditionals: Basic implementation

Q-adverbs express a set relation between two drefs (e.g. usually$^r_{\sqsubseteq q}$)

- an anaphorically retrieved dref q that stores restrictors,
- a newly established dref r that stores nuclear scopes;
- Due to conservativity, the nuclear scope dref is a structured subset (\sqsubseteq) of the restrictor dref.

Q-adv cond’ls: **restrictr drefs are provided by antecedents** anaphorically.

(23) *hikouki-ni nor-rebaq, taitei$^r_{\sqsubseteq q}$ kibun-ga waruku naru.*
plane-dat get.on-reba usually feeling-nom bad become
‘If I get on a plane, I usually feel sick.’

(23) $\implies max^q([I\text{-get-on-a-plane}_q]); max^r_{\sqsubseteq q}([I\text{-feel-sick}_r]); [MOST\{q, r\}]$

\[
\begin{align*}
\text{max}^q([I\text{-g.o.-plane}_q]) &\rightarrow q \quad W_1 \quad W_2 \quad W_3 \\
\text{max}^r_{\sqsubseteq q}([I\text{-feel-sick}_r]) &\rightarrow q \quad r \quad W_1 \quad W_2 \quad W_3 \quad \star
\end{align*}
\]

(* is a dummy situation that falsifies all propositions)
Q-adverbial conditionals: Basic implementation

Q-adverbs express a set relation between two drefs (e.g. usually^q_r)

- an anaphorically retrieved dref q that stores restrictors,
- a newly established dref r that stores nuclear scopes;
- Due to conservativity, the nuclear scope dref is a structured subset (\subseteq) of the restrictor dref.

Q-adv cond’ls: restrictor drefs are provided by antecedents anaphorically.

(23) $\text{hikouki-ni nor-reba}^q_r, \text{taitei}^r_q \text{kibun-ga waruku naru}$.
plane-dat get.on-reba usually feeling-nom bad become
‘If I get on a plane, I usually feel sick.’

(23) $\leadsto \text{max}^q([\text{I-get-on-a-plane}_q]); \text{max}^r\subseteq^q([\text{I-feel-sick}_r]); [\text{MOST}\{q, r\}]$

\[\begin{array}{c|c}
\text{max}^q([\text{I-g.o.-plane}_q]) & \begin{array}{c|c}
q & r \\
W_1 & W_1 \\
W_2 & W_2 \\
W_3 & \star \\
\end{array}
\end{array} \]

\[\begin{array}{c|c|c}
\text{max}^{\subseteq^q([\text{I-feel-sick}_r])} & \begin{array}{c|c}
q & r \\
W_1 & W_1 \\
W_2 & W_2 \\
W_3 & \star \\
\end{array}
\end{array} \]

\[\begin{array}{c|c|c}
\text{[MOST}\{q, r\}] & \begin{array}{c|c}
q & r \\
W_1 & W_1 \\
W_2 & W_2 \\
W_3 & \star \\
\end{array}
\end{array} \]

\(*\) is a dummy situation that falsifies all propositions
Q-adverbial conditionals: Explaining oddness of *moshi*
Q-adverbial conditionals: Explaining oddness of *moshi*

(24) ??*moshi*\(^p\) hikouki-ni nor-reba\(^q\subseteq p\), taitei\(^r\subseteq q\) kibun-ga waruku naru.

moshi plane-dat get.on-reba usually feeling-nom bad become
‘If I get on a plane, I usually feel sick.’
Q-adverbial conditionals: Explaining oddness of *moshi*

(24) ??*moshi*[^\(24\)]^p hikouki-ni nor-reba[^\(q\)]^p _taitei[^r\(q\)]^q kibun-ga waruku naru.

moshi plane-dat get.on-reba usually feeling-nom bad become

‘If I get on a plane, I usually feel sick.’

\sim [p|\text{sing}(p)]; \text{max}[^q\subseteq p([I\text{-g.}-plane_q])]; \text{max}[^r\subseteq q([I\text{-feel-sick}_r])]; [\text{MOST}\{q, r\}]
Q-adverbial conditionals: Explaining oddness of *moshi*

(24) ??*moshi*\(^p\) hikouki-ni nor-reba\(^q\subseteq p\), taitei\(^r\subseteq q\) kibun-ga waruku naru.

moshi plane-dat get.on-reba usually feeling-nom bad become
‘If I get on a plane, I usually feel sick.’

\[\sim [p|\text{sing}(p)]; \max^q\subseteq p([\text{I-g.-plane}_q]); \max^r\subseteq q([\text{I-feel-sick}_r]); [\text{MOST}\{q, r\}] \]
Q-adverbial conditionals: Explaining oddness of moshi

(24) "moship hikouki-ni nor-rebaq\subseteq p, taiteir\subseteq q kibun-ga waruku naru."

moshi plane-dat get.on-reba usually feeling-nom bad become
‘If I get on a plane, I usually feel sick.’

\(\sim [p|\text{sing}(p)]; \max^{q\subseteq p}([I\text{-}g\text{-}plane\textsubscript{q}}]; \max^{r\subseteq q}([I\text{-}feelsick\textsubscript{r}]); [\text{MOST}\{q, r\}]\)

- Moshi introduces singularity;
Q-adverbial conditionals: Explaining oddness of *moshi*

(24) ??**moshi**\(^p\) \(\text{hikouki-ni nor-reba}^{q\sqsubseteq p}\), **taitei**\(^r\sqsubseteq q\) *kibun-ga waruku naru.*

moshi plane-dat get.on-reba usually feeling-nom bad become

‘If I get on a plane, I usually feel sick.’

\[\sim [p|\text{sing}(p)]; \max^{q\sqsubseteq p}([I-\text{g.-plane}_q]); \max^{r\sqsubseteq q}([I-\text{feel-sick}_r]); [\text{MOST}\{q, r\}]\]

- *Moshi* introduces singularity;

```
\[
\begin{array}{c}
p \\
\text{w}_1 \\
p \\
\text{w}_2 \\
p \\
\text{w}_3 \\
\vdots
\end{array}
\quad \xrightarrow{[p|\text{sing}(p)]}
\quad \begin{array}{c}
p \\
\text{w}_1 \\
p \\
\text{w}_2 \\
p \\
\text{w}_3 \\
\vdots
\end{array}
\]  
```

\[\max^{q\sqsubseteq p}([I-\text{g.o.-plane}_q]) \]
Q-adverbial conditionals: Explaining oddness of *moshi*

(24) ??*moshi*\(^p\) hikouki-ni nor-reba\(^q\subseteq p\), taitei\(^r\subseteq q\) kibun-ga waruku naru.

moshi plane-dat get.on-reba usually feeling-nom bad become

‘If I get on a plane, I usually feel sick.’

\[\leadsto [p|\text{sing}(p)]; \max^q\subseteq p([I\text{-}g\text{-}o\text{-}plane_q]); \max^r\subseteq q([I\text{-}feelsick_r]); [\text{MOST}\{q, r\}]\]

- *Moshi* introduces singularity;

```
[p|\text{sing}(p)] \rightarrow w_1 \rightarrow w_1 \rightarrow w_2 \rightarrow w_2 \rightarrow w_3 \rightarrow w_3 \rightarrow \ldots
```

```
p q
\begin{array}{c|c}
w_1 & w_1 \\
p q
\end{array}
max^q\subseteq p([I\text{-}g\text{-}o\text{-}plane_q])

\begin{array}{c|c|c}
w_1 & w_1 & w_1 \\
p q
\end{array}
max^r\subseteq q([I\text{-}feelsick_r])
```

\[\leadsto \emptyset\]
Q-adverbial conditionals: Explaining oddness of *moshi*

(24) **moshi**\(^p\) hikouki-ni nor-reba\(_p\)\(^q\)\(_\sqsubseteq\)\(_p\), **taitei**\(_q\)\(^r\)\(_\sqsubseteq\)\(_q\) kibun-ga waruku naru.

moshi plane-dat get.on-reba usually feeling-nom bad become

‘If I get on a plane, I usually feel sick.’

\[\sim [p|\text{sing}(p)]; \max^q\subseteq_p([I-g.-plane__q]); \max^r\subseteq_q([I-feel-sick__r]); \text{[MOST}\{q, r\}\text{]}\]

- **Moshi** introduces singularity;
- inherited by the antecedent dref (\(q\)) and nuclear-scope dref (\(r\));

\[
\begin{array}{ccc}
p & q & r \\
\bullet & \bullet & \bullet \\
\end{array}
\]
Q-adverbial conditionals: Explaining oddness of *moshi*

(24) ??*moshi*\(^p\) hikouki-ni nor-reba\(_p\) \(q\sqsubseteq p\), *taitei*\(_q\) \(r\sqsubseteq q\) kibun-ga waruku naru.

‘If I get on a plane, I usually feel sick.’

\(\sim [p|\text{sing}(p)]; \max q\sqsubseteq p([I\text{-g.}-\text{plane}_q]); \max r\sqsubseteq q([I\text{-feel-sick}_r]); \text{[MOST}\{q, r\}\text{]}\)

- *Moshi* introduces singularity;
- inherited by the antecedent dref \((q)\) and nuclear-scope dref \((r)\);

\[
\begin{array}{c}
\text{\([p|\text{sing}(p)]\)} \quad \text{\(\max q\sqsubseteq p([I\text{-g.}-\text{plane}_q])\)} \quad \text{\(\max r\sqsubseteq q([I\text{-feel-sick}_r])\)} \quad \text{\(\text{[MOST}\{q, r\}\text{]}\)}
\end{array}
\]

\[
\begin{array}{c}
p\quad p\quad p
\end{array}
\]

\[
\begin{array}{c}
\text{\([p|\text{sing}(p)]\)} \quad \text{\(\max q\sqsubseteq p([I\text{-g.}-\text{plane}_q])\)} \quad \text{\(\max r\sqsubseteq q([I\text{-feel-sick}_r])\)} \quad \text{\(\text{[MOST}\{q, r\}\text{]}\)}
\end{array}
\]

\[
\begin{array}{c}
w_1\quad w_1\quad w_1
\end{array}
\]

\[
\begin{array}{c}
w_2\quad w_2\quad w_2
\end{array}
\]

\[
\begin{array}{c}
w_3\quad w_3\quad w_3
\end{array}
\]

\[
\begin{array}{c}
w_1\quad w_1\quad w_1
\end{array}
\]

\[
\begin{array}{c}
w_2\quad w_2\quad w_2
\end{array}
\]

\[
\begin{array}{c}
w_3\quad w_3\quad w_3
\end{array}
\]

\[
\begin{array}{c}
w_1\quad w_1\quad w_1
\end{array}
\]

\[
\begin{array}{c}
w_2\quad w_2\quad w_2
\end{array}
\]

\[
\begin{array}{c}
w_3\quad w_3\quad \star
\end{array}
\]

\[
\begin{array}{c}
\text{\(\text{[MOST}\{q, r\}\text{]}\)}
\end{array}
\]

\[
\begin{array}{c}
\text{\(\text{[MOST}\{q, r\}\text{]}\)}
\end{array}
\]

\[
\begin{array}{c}
\text{\(\text{[MOST}\{q, r\}\text{]}\)}
\end{array}
\]
Q-adverbial conditionals: Explaining oddness of *moshi*

\[(24) \quad ??\text{moshi}^p \text{ hikouki-ni nor-reba}_{q \sqsubseteq p}^p, \text{taitei}^q_{r \sqsubseteq q} \text{ kibun-ga waruku naru.}\]

moshi plane-dat get.on-reba usually feeling-nom bad become

‘If I get on a plane, I usually feel sick.’

\[\leadsto [p|\text{sing}(p)]; \max^q_{\sqsubseteq p}(\text{I-g.-plane}_q); \max^r_{\sqsubseteq q}(\text{I-feel-sick}_r); [\text{MOST}\{q, r\}]\]

- Moshi introduces singularity;
- inherited by the antecedent dref (q) and nuclear-scope dref (r);
- But adverbial quantification require **non-singleton** restrictors!

```
<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>w1</td>
<td>w1</td>
<td>w1</td>
</tr>
<tr>
<td>w2</td>
<td>w2</td>
<td>w2</td>
</tr>
<tr>
<td>w3</td>
<td>w3</td>
<td>w3</td>
</tr>
</tbody>
</table>
```

\[\leadsto [p|\text{sing}(p)]; \max^q_{\sqsubseteq p}(\text{I-g.-plane}_q); \max^r_{\sqsubseteq q}(\text{I-feel-sick}_r); [\text{MOST}\{q, r\}]\]
Q-adverbial conditionals: Explaining oddness of *moshi*

(24) \(??\) *moshi*\(^p\) hikouki-ni nor-reba\(^q\subseteq p\), taitei\(^r\subseteq q\) kibun-ga waruku naru.

moshi plane-dat get.on-reba usually feeling-nom bad become

‘If I get on a plane, I usually feel sick.’

\[\sim [p|\text{sing}(p)]; \max^{q\subseteq p}([\text{I-g.-plane}_q]); \max^{r\subseteq q}([\text{I-feel-sick}_r]); [\text{MOST}\{q, r\}] \]

- *Moshi* introduces singularity;
- inherited by the antecedent dref (\(q\)) and nuclear-scpe dref (\(r\));
- But adverbial quantification require **non-singleton** restrictors!

...
Q-adverbial conditionals: Explaining oddness of *moshi*

(24) ??*moshi*_p hikouki-ni nor-reba_{p,q} taitei_{r,q} kibun-ga waruku naru.

‘If I get on a plane, I usually feel sick.’

\[\leadsto [p|\text{sing}(p)]; \max^{q\subseteq p}(\text{[I-g.-plane}_q]); \max^{r\subseteq q}(\text{[I-feel-sick}_{r}]); [\text{MOST}\{q, r\}] \]

- *Moshi* introduces singularity;
- inherited by the antecedent dref (*q*) and nuclear-scope dref (*r*);
- But adverbial quantification require **non-singleton** restrictors!

\[
\begin{array}{ccc}
\begin{array}{c}
p \\
[\text{[p|\text{sing}(p)]}]
\end{array}
& \xrightarrow{\max^{q\subseteq p}(\text{[I-g.-plane}_q])} & \begin{array}{c}
p \\
\text{w}_1
\end{array}
& \xrightarrow{\max^{q\subseteq p}(\text{[I-g.o.-plane}_q])} & \begin{array}{c}
p \\
\text{w}_2
\end{array}
& \xrightarrow{\max^{q\subseteq p}(\text{[I-g.o.-plane}_q])} & \begin{array}{c}
p \\
\text{w}_3
\end{array}
& \vdots
\end{array}
\]

\[
\begin{array}{ccc}
\begin{array}{c}
p \\
\text{w}_1
\end{array}
& \xrightarrow{\max^{r\subseteq q}(\text{[I-fl-sick}_{r}])} & \begin{array}{c}
p \\
\text{w}_2
\end{array}
& \xrightarrow{\max^{r\subseteq q}(\text{[I-fl-sick}_{r}])} & \begin{array}{c}
p \\
\text{w}_3
\end{array}
& \xrightarrow{\max^{r\subseteq q}(\text{[I-fl-sick}_{r}])} & \begin{array}{c}
p \\
\text{w}_3
\end{array}
& \xrightarrow{[\text{MOST}\{q, r\}]} & \emptyset
\end{array}
\]

Moshi prevents the antecedent from providing a meaningful restrictor for Q-adverbs.
Recall: Unlike Q-adverbs, modals are not restricted by the antecedents.

New proposal for modals: associated with three drefs (e.g. might $q_r \mathbin{\sqsubseteq} q_p$)

1. an anaphorically retrieved dref that stores evaluation situations (p),
2. a newly established restrictor dref (q), (contra Brasoveanu)
3. a newly established nuclear-scope dref (r); and express a set relation between q and r.

E.g. ϕ might $q_r \mathbin{\sqsubseteq} q_p \mapsto \max q_r[\{R_{\text{epi}}\{p, q\}\}]; \max r \mathbin{\sqsubseteq} q_r[\{\text{SOME}\{q, r\}\}]$
Modal conditionals: Basic implementation (modals)

Recall: Unlike Q-adverbs, **modals are not restricted by the antecedents.**
Modal conditionals: Basic implementation (modals)

Recall: Unlike Q-adverbs, modals are not restricted by the antecedents.

New proposal for modals: associated with three drefs (e.g. $\text{might}_{p,r \sqsubseteq q}$)
Modal conditionals: Basic implementation (modals)

Recall: Unlike Q-adverbs, modals are not restricted by the antecedents.

New proposal for modals: associated with three drefs (e.g. might^q_r)

1. an anaphorically retrieved dref that stores evaluation situations (p),
Modal conditionals: Basic implementation (modals)

Recall: Unlike Q-adverbs, modals are not restricted by the antecedents.

New proposal for modals: associated with three drefs (e.g. $\text{might}^q_r \subseteq q$)

1. an anaphorically retrieved dref that stores evaluation situations (p),
2. a newly established restrictor dref (q),

(contra Brasoveanu)
Modal conditionals: Basic implementation (modals)

Recall: Unlike Q-adverbs, modals are not restricted by the antecedents.

New proposal for modals: associated with three drefs (e.g. \(\text{might}^q, r \sqsubseteq q \))

1. an anaphorically retrieved dref that stores evaluation situations (\(p \)),
2. a newly established restrictor dref (\(q \)),
3. a newly established nuclear-scope dref (\(r \));

...
Recall: Unlike Q-adverbs, ***modals are not restricted by the antecedents.***

New proposal for modals: associated with three drefs (e.g. $\text{might}^q_{p,r\sqsubseteq q}$)

1. an anaphorically retrieved dref that stores evaluation situations (p),

2. a **newly established restrictor dref** (q),

3. a newly established nuclear-scope dref (r);

and express a set relation between q and r.

Modal conditionals: Basic implementation (modals)

Recall: Unlike Q-adverbs, **modals are not restricted by the antecedents.**

New proposal for modals: associated with three drefs (e.g. $\text{might}^q, r \sqsubseteq q$)

1. an anaphorically retrieved dref that stores evaluation situations (p),
2. a **newly established restrictor dref** (q),
3. a newly established nuclear-scope dref (r); and express a set relation between q and r.

E.g. $\phi \text{ might}^q, r \sqsubseteq q$
Modal conditionals: Basic implementation (modals)

Recall: Unlike Q-adverbs, modals are not restricted by the antecedents.

New proposal for modals: associated with three drefs (e.g. $\text{might}^q_{p,r\sqsubseteq q}$)

1. an anaphorically retrieved dref that stores evaluation situations (p),
2. a newly established restrictor dref (q),
3. a newly established nuclear-scope dref (r);

and express a set relation between q and r.

E.g. $\phi \text{ might}^q_{p,r\sqsubseteq q} \leadsto \max^q([R^{epi}\{p, q\}]); \max^{r\sqsubseteq q}(\Phi_r); [\text{SOME}\{q, r\}]$
Modal conditionals: Basic implementation (modals in conditionals)

Mary-ga M-nom ku-reba q, come-reba John-mo J-nom ku-ru come-npst kamoshirenai, s ⊑ r.

‘If Mary comes, John might also come.’

\[\begin{align*}
\text{max} q (m\text{-come}) & \rightarrow \text{max} r (R\text{epi}\{q, r\}) \\
\text{max} s \subseteq r (j\text{-come}) & \rightarrow \text{max} q (m\text{-come})
\end{align*}\]
Modal conditionals: Basic implementation (modals in conditionals)

(25) \(\text{Mary-} \text{a ku-} \text{reba}^q, \text{John-} \text{mo ku-ru} \quad \text{kamoshirenai}^r, \text{s} \sqsubseteq \text{r}. \)

\(\text{M-nom} \quad \text{come-} \text{reba} \quad \text{J-nom} \quad \text{come-} \text{npst} \quad \text{might} \)

‘If Mary comes, John might also come.’
(25) \(\text{Mary-ga ku-reba}^q, \text{John-mo ku-ru} \quad \text{kamoshirenai}^{r,s \sqsubseteq r}. \)
\[\text{M-nom come-reba J-nom come-npst might} \]
\[\text{‘If Mary comes, John might also come.’} \]

(25) \(\sim \quad \text{max}^q([\text{m-come}_q]); \text{max}^r([\text{Repi} \{q, r\}]); \text{max}^{s \sqsubseteq r}([\text{j-come}_s]); [\text{SOME}\{r, s\}] \)
Mary-ga ku-rebaq, John-mo ku-ru kamoshirenair,s\textsubscript{q}. ‘If Mary comes, John might also come.’

(25) \[\max^q([m\text{-}come_q]); \max^r([R^{epi}\{q, r\}]); \max^{s\subseteq r}([j\text{-}come_s]); [SOME\{r, s\}] \]
Modal conditionals: Basic implementation (modals in conditionals)

(25) \[\text{Mary-ga ku-reba}^q, \text{John-mo ku-ru kamoshirenai}^{r,s} \subseteq r.\]
\[
\begin{align*}
\text{M-nom} & \text{ come-reba J-nom come-npst might} \\
& \text{ ‘If Mary comes, John might also come.’ }
\end{align*}
\]

(25) \[\leadsto \max^q([m\text{-come}_q]); \max^r([R^{\text{epi}}\{q, r\}])); \max^{s\subseteq r}([j\text{-come}_s]); [\text{SOME}\{r, s\}]
\]

\[
\begin{array}{c|c}
q & r \\
\hline
w_1 & w_1 \\
\hline
w_1 & w_3 \\
\hline
w_2 & w_1 \\
\hline
w_2 & w_3
\end{array}
\]

\[
\begin{array}{c|c}
q & r \\
\hline
w_1 & w_1 \\
\hline
w_1 & w_3 \\
\hline
w_2 & w_1 \\
\hline
w_2 & w_3
\end{array}
\]

\[
\begin{array}{c|c}
q & r \\
\hline
w_1 & w_1 \\
\hline
w_1 & w_3 \\
\hline
w_2 & w_1 \\
\hline
w_2 & w_3
\end{array}
\]
Modal conditionals: Basic implementation (modals in conditionals)

(25) Mary-ga ku-rebaq, John-mo ku-ru kamoshirenaiq,s\subseteq r.
M-nom come-reba J-nom come-npst might
‘If Mary comes, John might also come.’

(25) \rightsquigarrow \text{max}q([m-come\textsubscript{q}]); \text{max}r([Repi\{q, r\}]); \text{max}s\subseteq r([j-come\textsubscript{s}]); [SOME\{r, s\}]

\[
\begin{array}{c|c}
q & r \\
\hline
W_1 & W_1 \\
W_1 & W_3 \\
W_2 & W_1 \\
W_2 & W_3 \\
\end{array}
\]

\[
\begin{array}{c|c|c}
q & r & s \\
\hline
W_1 & W_1 & W_1 \\
W_1 & W_3 & * \\
W_2 & W_1 & W_1 \\
W_2 & W_3 & * \\
\end{array}
\]
Modal conditionals: Basic implementation (modals in conditionals)

M-nom come-reba J-nom come-npst might
‘If Mary comes, John might also come.’

(25) \[\max^q([m\text{-}come_q]) \circ \max^r(\mathbb{R}^{epi}\{q, r\}) \circ \max^s \preceq^r([j\text{-}come_s]) \circ [\text{SOME}\{r, s\}] \]
Modal conditionals: Explaining acceptability of *moshi*
Modal conditionals: Explaining acceptability of *moshi*

(26)

\[
\text{moshi}^p \text{ Mary-ga } \text{ku-reba}_q^p, \text{John-mo } \text{ku-ru} \quad \text{kamoshirenai}_q^r, s^r.
\]

\text{moshi} \text{ M-nom come-reba J-nom come-npst might}

‘If Mary comes, John might also come.’
Modal conditionals: Explaining acceptability of *moshi*

(26)

\[
\text{moshi}^p \quad \text{Mary-}ga \quad \text{ku-reba}^q_{\geq p} \quad \text{John-mo} \quad \text{ku-ru} \quad \text{kamoshirenai}^r_{q, s \leq r}.
\]

moshi M-nom come-reba J-nom come-npst might

‘If Mary comes, John might also come.’

\[\sim[p|\text{sing}(p)]; \max^q_{\geq p}([m-\text{come}_q]); \max^r([\text{Repi}\{q, r\}]); \max^s_{\leq r}([j-\text{come}_s]); [\text{SOME}\{r, s\}]\]
 Modal conditionals: Explaining acceptability of *moshi*

(26) \[\text{moshi}^p \text{ Mary-ga } \text{ku-reba}_p^q \subseteq^p, \text{John-mo } \text{ku-ru} \text{ kamoshirenai}_q^r, s \sqsubseteq^r. \]

moshi M-nom come-reba J-nom come-npst might

‘If Mary comes, John might also come.’

\[\sim [p \mid \text{sing}(p)]; \max^q \subseteq^p ([\text{m-come}_q]); \max^r ([\text{Repi}\{q, r\}]); \max^s \subseteq^r ([\text{j-come}_s]); [\text{SOME}\{r, s\}] \]

Moshi does not prevent the antecedent from providing a meaningful restrictor for modals:
Modal conditionals: Explaining acceptability of *moshi*

(26)

\[\text{moshi}_p^p \text{ Mary-ga ku-reba}_q^q \subseteq p, \text{ John-mo ku-ru } \text{ kamoshirenai}_q^r, s \subseteq r. \]

moshi M-nom come-reba J-nom come-npst might

‘If Mary comes, John might also come.’

\[
\sim [p | \text{sing}(p)]; \max q \subseteq p ([m-\text{come}_q]); \max r ([\text{Repi} \{q, r\}]); \max s \subseteq r ([j-\text{come}_s]); [\text{SOME} \{r, s\}]
\]

Moshi does **not** prevent the antecedent from providing a meaningful restrictor for modals:

\[
\begin{array}{c}
\text{w}_1 \\
p \\
\text{w}_2 \\
\vdots
\end{array}
\xrightarrow{[p | \text{sing}(p)]}
\begin{array}{c}
p \\
\text{w}_1 \\
p \\
\text{w}_2 \\
\vdots
\end{array}
\]

\[
\begin{array}{c}
p \\
\text{w}_1 \\
p \\
\text{w}_2 \\
\vdots
\end{array}
\xrightarrow{\max q \subseteq p ([m-\text{come}_q])}
\begin{array}{c}
p \\
\text{w}_1 \\
p \\
\text{w}_2 \\
\vdots
\end{array}
\]

\[
\begin{array}{c}
p \\
\text{w}_1 \\
p \\
\text{w}_2 \\
\vdots
\end{array}
\xrightarrow{\max q \subseteq p ([m-\text{come}_q])}
\begin{array}{c}
p \\
\text{w}_1 \\
p \\
\text{w}_2 \\
\vdots
\end{array}
\]

\[
\begin{array}{c}
p \\
\text{w}_1 \\
p \\
\text{w}_2 \\
\vdots
\end{array}
\]
Modal conditionals: Explaining acceptability of *moshi*

(26) \(\text{moshi}^p \text{ Mary-ga ku-reba}^q \sqsubseteq^p \text{, John-mo ku-ru} \text{ kamoshirenai}^r, s \sqsubseteq^r. \)

moshi M-nom come-reba J-nom come-npst might
‘If Mary comes, John might also come.’

\(\sim [p | \text{sing}(p)]; \max^q \sqsubseteq^p ([m-\text{come}_q]); \max^r ([\text{Repi}\{q, r\}]); \max^s \sqsubseteq^r ([j-\text{come}_s]); [\text{SOME}\{r, s\}] \)

Moshi does **not** prevent the antecedent from providing a meaningful restrictor for modals:

\[
\begin{array}{c|c|c|c}
 & p & q & r \\
\hline
w_1 & w_1 & w_1 & w_1 \\
\hline
w_2 & w_2 & w_3 & w_3
\end{array}
\]
Modal conditionals: Explaining acceptability of *moshi*

\[(26)\]
\[\text{moshi}_p \text{ Mary-ga ku-\textit{reba}}_p^{q \sqsubseteq p}, \text{ John-mo ku-\textit{ru}} \quad \text{kamoshirenai}_q^{r, s \sqsubseteq r}.
\]

Moshiba M-nom come-reba J-nom come-npst might
‘If Mary comes, John might also come.’

\[\sim [p|\text{\textit{sing}}(p)]; \text{max}^{q \sqsubseteq p}([m-\text{come}_q]); \text{max}^r([\text{Repi}\{q, r\}]); \text{max}^s^{r}([j-\text{come}_s]); [\text{SOME}\{r, s\}]]\]

Moshi does not prevent the antecedent from providing a meaningful restrictor for modals:

\[
\begin{array}{c}
p \\
\text{w}_1 \\
\vdots \\
\text{w}_2 \\
\end{array} \quad \xrightarrow{[p|\text{\textit{sing}}(p)]} \quad \begin{array}{c}
p \quad \text{max}^{q \sqsubseteq p}([m-\text{come}_q]) \\
\text{w}_1 \quad \text{w}_1 \\
\end{array} \quad \xrightarrow{\text{max}^{q \sqsubseteq p}([m-\text{come}_q])} \quad \begin{array}{c}
p \quad p \\
\text{w}_2 \quad \text{w}_2 \\
\end{array} \quad \xrightarrow{\text{max}^r([\text{Repi}\{q, r\}])} \quad \begin{array}{c}
p \quad p \\
\text{w}_2 \quad \text{w}_2 \\
\end{array} \quad \xrightarrow{\text{max}^r([\text{Repi}\{q, r\}])} \quad \begin{array}{c}
p \quad p \quad r \\
\text{w}_2 \quad \text{w}_2 \quad \text{w}_3 \\
\end{array}
\]

\[
\begin{array}{c}
p \quad q \quad r \quad s \\
\text{w}_1 \quad \text{w}_1 \quad \text{w}_1 \quad \text{*} \\
\text{w}_1 \quad \text{w}_1 \quad \text{w}_3 \quad \text{*} \\
\end{array} \quad \xrightarrow{\text{max}^s^{r}([j-\text{come}_s])} \quad \begin{array}{c}
p \quad q \quad r \quad s \\
\text{w}_2 \quad \text{w}_2 \quad \text{w}_1 \quad \text{w}_1 \\
\text{w}_2 \quad \text{w}_2 \quad \text{w}_3 \quad \text{*} \\
\end{array} \quad \xrightarrow{\text{max}^s^{r}([j-\text{come}_s])} \quad \begin{array}{c}
p \quad q \quad r \quad s \\
\text{w}_2 \quad \text{w}_2 \quad \text{w}_1 \quad \text{w}_1 \\
\text{w}_2 \quad \text{w}_2 \quad \text{w}_3 \quad \text{*} \\
\end{array}
\]
Modal conditionals: Explaining acceptability of *moshi*

(26)
moshi$_p$ Mary-ga ku-*reba*$_p$$_q$$_p$, John-mo ku-*ru* kamoshirenai$_q$$_r$,$_s$$r$.

moshi M-nom come-*reba* J-nom come-npst might

‘If Mary comes, John might also come.’

$\sim [p | \text{sing}(p)]; \text{max}^q_{\subseteq p}([m-\text{come}_q]); \text{max}^r([\text{Re}^\pi\{q, r\}]); \text{max}^s_{\subseteq r}([j-\text{come}_s]); [\text{SOME}\{r, s\}]$

Moshi does not prevent the antecedent from providing a meaningful restrictor for modals:

![Diagram](image-url)
Modal conditionals: Explaining acceptability of *moshi*

\[
(26) \quad \text{moshi}^p \text{ Mary-ga ku-reba}^p_{\text{q} \sqsubseteq \text{p}}, \text{ John-mo ku-ru kamoshirenai}^r_{\text{q}, \text{s} \sqsubseteq \text{r}}.
\]

\[
\text{moshi M-nom come-reba J-nom come-npst might 'If Mary comes, John might also come.'}
\]

\[
\sim[p|\text{sing}(p)]; \text{max}^q_{\sqsubseteq \text{p}}([\text{m-come}_q]); \text{max}^r([\text{Repi} \{q, r\}]); \text{max}^s_{\sqsubseteq \text{r}}([\text{j-come}_s]); [\text{SOME}\{r, s\}]
\]

Moshi does not prevent the antecedent from providing a meaningful restrictor for modals:

![Diagram of modal conditionals](attachment:modal_conditionals.png)
1. Introduction

2. Data

3. Independent assumption: Q-adverbial vs. modal quantification

4. Analysis

5. Summary
We observed a cut between Q-adverbial and modal conditionals in Japanese in terms of the distribution of *moshi*;
We observed a cut between Q-adverbial and modal conditionals in Japanese in terms of the distribution of *moshi*.

The cut challenged the common assumption of the referential analysis that conditional antecedents introduce plural drefs;
We observed a cut between **Q-adverbial and modal conditionals** in Japanese in terms of the distribution of *moshi*;

The cut challenged the common assumption of the referential analysis that conditional antecedents introduce plural drefs;

We explained the data based on
We observed a cut between **Q-adverbial and modal conditionals** in Japanese in terms of the distribution of *moshi*;

The cut challenged the common assumption of the referential analysis that conditional antecedents introduce plural drefs;

We explained the data based on
- the independent assumption that unlike Q-adverbs, **modals are not restricted by conditional antecedents**; and
We observed a cut between **Q-adverbial and modal conditionals** in Japanese in terms of the distribution of *moshi*;

The cut challenged the common assumption of the referential analysis that conditional antecedents introduce plural drefs;

We explained the data based on
- the independent assumption that unlike Q-adverbs, **modals are not restricted by conditional antecedents**; and
- a referential analysis of conditionals with **overt singularity marking** of situation-type drefs, i.e. by *moshi*.
Thanks! Questions?

This work was supported by National Science Foundation, Award No. 2116972, “Research on conditional and modal language” (Magdalena Kaufmann, PI; Stefan Kaufmann, Co-PI).

For discussions and comments, I am indebted to Magdalena Kaufmann, Teruyuki Mizuno, Yoshiki Fujiwara, Giulio Ciferri Muramatsu, Yuya Noguchi, Floris Roelofsen, Yimei Xiang, Yusuke Yagi, Alessandro Zucchi, the audience at Many-time-zone Reading Group (December 2021), Theoretical Linguistics at Keio (TaLK) Semantics Conference (March 2022) and UConn Meaning Group (April 2022), and four anonymous reviewers of SALT 32.
6. Appendix A: Two types of Q-adverbs and interactions with moshi

7. Appendix B: Potential type-flexibility of moshi
Not all Q-adverbs have to be restricted by conditional antecedents (cf. Geurts 2004 for English):

- **often-type**: *yoku* ‘often’, *tokidoki* ‘sometimes’; can take narrow scope and yield modal readings.

(27) \(\text{hikouki-ni nor-eba, \{yoku / tokidoki\} kibun-ga waruku naru.} \)

plane-dat get.on-reba often sometimes feeling-nom bad become
‘If I’m on a plane, I often/sometimes feel sick.’

a. Q-adverbial: Many/Some situations where I’m on a plane are situations where I feel sick.

b. Modal: In case I get on a plane, I’ll feel sick many times/on and off during that flight.

- **usually-type**: *itsumo* ‘always’, *taitei* ‘usually’; can’t take narrow scope.

(28) \(\text{hikouki-ni nor-eba, \{itsumo / taitei\} kibun-ga waruku naru.} \)

plane-dat get.on-reba always usually feeling-nom bad become
‘If I’m on a plane, I always/usually feel sick.’

a. Q-adverbial: All/Most situations where I’m on a plane are situations where I feel sick.

b. \(\text{x} \) Modal: In case I’m on a plane, I’ll feel sick the whole time/many times during that flight.
Often-type + moshi: modal reading only.

(29) *moshi* hikouki-ni nor-eba, {yoku / tokidoki} kibun-ga waruku naru.
moshi plane-dat get.on-reba often sometimes feeling-nom bad become
‘If I’m on a plane, I often/sometimes feel sick.’

a. **X** Q-adv: Many/Some situations where I’m on a plane are
situations where I feel sick.

b. Modal: In case I get on a plane, I’ll feel sick
many times/on and off during that flight.

Usually-type + moshi: sentences are odd.

(30) ??*moshi* hikouki-ni nor-eba, {itsumo / taitei} kibun-ga waruku naru.
moshi plane-dat get.on-reba always usually feeling-nom bad become
‘If I’m on a plane, I always/usually feel sick.’

These data further confirm the observation that *moshi* prevents the antecedent from restricting Q-adverbs.
6. Appendix A: Two types of Q-adverbs and interactions with *moshi*

7. Appendix B: Potential type-flexibility of *moshi*
An alternative hypothesis: *Moshi* lexically selects the antecedents that refer to situations; antecedents of modal conditionals refer to worlds, and are thus incompatible with the lexical restriction of *moshi*.

Preliminary evidence against this hypothesis: *Moshi* shows type-flexibility.

Yang (t.a.) shows that *moshi* is allowed in -wa-marked topics:

(31)
moshi tameshi-ta koto nai kata-wa taiken shi-ta hou-ga ii
moshi try-pst thing neg people-top try do-pst way-nom good
des-u yo!
cop.pol-npst sfp
lit. ‘People who haven’t tried are such that they should try it.’
(Roughly:) ‘If one hasn’t tried it, one should try it.’ (Web ex.)

Crucially, in both conditionals and topics, *moshi* exhibits the requirement that the extension of the constituent modified by (antecedent clauses, topical NPs) vary across the context set.
E.g. Bad in factual conditionals:

(32) A: ‘I received my bonus yesterday.’
B: (moshi) kinou kin’ippuu-ga de-ta nara, ashita kaimono-ni ik-ou.
moshi yesterday bonus-nom release-pst cond tomorrow shopping-dat go-vol
‘If you received your bonus yesterday, let’s go shopping tomorrow.’

E.g. Bad if the speaker knows which individuals satisfy the property expressed by the topic and which individuals don’t:

(33) a. Teacher: ‘Who wants to read newspapers?’
b. (Those who want newspapers raise their hands, those who do not want newspapers do not raise their hands.)
c. Teacher: (moshi) shinbun-o yomi-tai hito-wa, koko-ni aru yo.
moshi newspaper read-want people-top here-dat be sfp
lit. ‘People who want to read newspapers, they are here.’

Yang’s analysis: Moshi exhibits a requirement of speaker uncertainty that is type-flexible between worlds and individuals.

But it still remains unclear whether moshi is type-flexible between situation and worlds. Suggestions for diagnostics are welcome!
References I

References II

