The closeness constraint on focus association and the syntax of Q-particles

Muyi Yang

University of Connecticut
muyi.yang@uconn.edu

January 9, 2022
LSA 2022 Annual Meeting
Introduction
Closeness constraint in focus association

In some languages, focus association at a distance is possible.

(1) a. I met only [John].
 b. I only met [John].

But in some languages, focus particles must be as close to their associates as possible (Erlewine 2017 for Vietnamese; Zanon 2018 a.o.).

E.g. Russian 'only' requires adjacency with its associate:

 b. *Andrej Andrey tol’ko ispek dlja sestry.
 c. *Tol’ko only Andrej Andrey ispek dlja sestry.

'Andrey only baked [A PIE] for his sister.' (based on Zanon 2018: 420)
Closeness constraint in focus association

In some languages, focus association at a distance is possible.

(1) a. I met only [John]_F.
 b. I only met [John]_F.

But in some languages, focus particles must be as close to their associates as possible (Erlewine 2017 for Vietnamese; Zanon 2018 for Russian a.o.).

E.g. Russian 'tol’ko' requires adjacency with its associate:

 b. *Andrej Andrey tol’ko ispek baked for sister.

'Andrey only baked [A PIE] for his sister.' (based on Zanon 2018: 420)
Closeness constraint in focus association

In some languages, focus association at a distance is possible.

(1) a. I met only [John]$_F$.
b. I only met [John]$_F$.

But in some languages, focus particles must be as close to their associates as possible (Erlewine 2017 for Vietnamese; Zanon 2018 for Russian a.o.).
Closeness constraint in focus association

In some languages, focus association at a distance is possible.

(1)
 a. I met only [John]$_F$.
 b. I only met [John]$_F$.

But in some languages, focus particles must be as close to their associates as possible (Erlewine 2017 for Vietnamese; Zanon 2018 for Russian a.o.).

E.g. Russian *tol’ko* ‘only’ requires adjacency with its associate:

(2)
 a. Andrej *tol’ko* [PIROG]$_F$ ispek dlja sestry.
 Andrey only pie baked for sister
 Andrey only baked pie for sister
 ‘Andrey only baked [A PIE]$_F$ for his sister.’ (based on Zanon 2018: 420)
Closeness constraint in focus association

When the associate is in an extraction island, *tol’ko* requires adjacency with the island:
Closeness constraint in focus association

When the associate is in an extraction island, *tol’ko* requires adjacency with the island:

(3) ?*Anna TSEJLONSKIJF podaet [svežij t čaj].
 Anna Ceylon serves fresh tea
 ‘Anna serves fresh [CEYLON]F tea.’
 (Zanon 2018: 434)
Closeness constraint in focus association

When the associate is in an extraction island, *tol’ko* requires adjacency with the island:

(3) ?*Anna TSEJLONSKIJ_F podaet [svežij t čaj].
 Anna Ceylon serves fresh tea
 ‘Anna serves fresh [CEYLON]_F tea.’ (Zanon 2018: 434)

(4) a. *Anna podaet [svežij *tol’ko* TSEJLONSKIJ_F čaj].
 Anna serves fresh only Ceylon tea
b. ?Anna podaet *tol’ko* [svežij TSEJLONSKIJ_F čaj].
 Anna serves only fresh Ceylon tea
c. *Tol’ko Anna podaet [svežij TSEJLONSKIJ_F čaj].
 only Anna serves fresh Ceylon tea
 ‘Anna serves only fresh [CEYLON]_F tea.’ (based on Zanon 2018: 434)
The closeness constraint is attested also in *wh*-questions, with the Q-particle *da* in Sinhala:

(5) *Chitra kohe da giyee?*

Chitra where da go.pst.foc

‘Where did Chitra go?’
The closeness constraint is attested also in *wh*-questions, with the Q-particle *da* in Sinhala:

(5) *Chitra kohe da giyee?*
 Chitra where da go.pst.foc
 ‘Where did Chitra go?’

Upshot: Similarly to Russian *tol’ko*, the Q-particle *da* needs to be as close to the *wh*-word as possible.
The closeness constraint is attested also in *wh*-questions, with the Q-particle *də* in Sinhala:

(5) *Chitra kohe də giyee?*
Chitra where də go.pst.foc
‘Where did Chitra go?’

Upshot: Similarly to Russian *tol’ko*, the Q-particle *də* needs to be as close to the *wh*-word as possible.

Roadmap:
- Establishing the closeness constraint in Sinhala *wh*-questions
- Challenging the previous accounts of Sinhala *wh*-questions
- Proposing a phase-based movement account of *də*
Closeness constraint in Sinhala *wh*-questions
Basic paradigm

Sinhala has a series of focus particles that require the verb to be inflected with the focus suffix *e* (Gair and Sumangala 1991; Chandralal 2010 a.o.).
Basic paradigm

Sinhala has a series of focus particles that require the verb to be inflected with the focus suffix e (Gair and Sumangala 1991; Chandralal 2010 a.o.).

Cleft:

(6) \[\text{[ee potə] tamai \{kieuwe / *kieuwa\}.} \]
\hspace{1cm} that book part read.foc read.nfoc
\hspace{1cm} ‘It was that book that you read.’

- \text{wh}-questions:

(7) Chitra kohe\{giyee go.pst.foc / *giyaa}\?
\hspace{1cm} ‘Where did Chitra go?’

(8) kau\{pot\} book kieuwe?
\hspace{1cm} ‘Who read the book?’

(9) kohom\{kaa-ek\} car hadanne?
\hspace{1cm} ‘How will you fix the car?’
Basic paradigm

Sinhala has a series of focus particles that require the verb to be inflected with the focus suffix e (Gair and Sumangala 1991; Chandralal 2010 a.o.).

Cleft:

(6) [ee potə] tamai {kieuwe / *kieuwa}.
that book part read.foc read.nfoc
‘It was that book that you read.’

wh-questions:

(7) Chitra kohe da {giyee / *giyaa}?
Chitra where da go.pst.foc go.pst.nfoc
‘Where did Chitra go?’
Basic paradigm

Sinhala has a series of focus particles that require the verb to be inflected with the focus suffix *e* (Gair and Sumangala 1991; Chandralal 2010 a.o.).

Cleft:

(6) \[ee \hspace{0.2em} potə \hspace{0.2em} tamai \{kieuwe \hspace{0.2em} / \hspace{0.2em} *kieuwa\}.\]
 that book part read.foc read.nfoc
 ‘It was that book that you read.’

wh-questions:

(7) \[Chitra \hspace{0.2em} kohe \hspace{0.2em} da \{giyee \hspace{0.2em} / \hspace{0.2em} *giyaa\}?\]
 Chitra where da go.pst.foc go.pst.nfoc
 ‘Where did Chitra go?’

(8) \[kau \hspace{0.2em} da \hspace{0.2em} potə \hspace{0.2em} kieuwe?\]
 who da book read.foc
 ‘Who read the book?’

(9) \[kohomə \hspace{0.2em} da \hspace{0.2em} kaa-ekə \hspace{0.2em} hadanne?\]
 how da car fix.foc
 ‘How will you fix the car?’
Basic paradigm: Locality constraint
Basic paradigm: Locality constraint

When the wh-word is in an island, \(d\check{o} \) requires **adjacency with the island**:

(10) a. *[mon\(\check{o}wa\) \(d\check{o}\) gatt\(\check{e}\) \(kenaa\)] aawe?
 what \(q\) buy.pst.inf person come.pst.foc

b. *[mon\(\check{o}wa\) gatt\(\check{e}\) \(kenaa\)] \(d\check{o}\) aawe?
 what buy.pst.inf person \(q\) come.pst.foc

lit. ‘What did a person [that bought t] came?’
Basic paradigm: Locality constraint

When the \textit{wh}-word is in an island, \textit{də} requires \textbf{adjacency with the island}:

(10)\begin{enumerate}
\item *[\textit{monəwa də gattə kena} aawe] aawe?
 \begin{itemize}
 \item what \quad \textit{q} \quad \text{buy.pst.inf} \quad \text{person} \quad \text{come.pst.foc}
 \end{itemize}
\item [\textit{monəwa gattə kena} \textit{də} aawe] aawe?
 \begin{itemize}
 \item what \quad \text{buy.pst.inf} \quad \text{person} \quad \textit{q} \quad \text{come.pst.foc}
 \end{itemize}
\end{enumerate}

\text{lit. ‘What did a person [that bought t] came?’}

In long-distance questions, \textit{də} requires \textbf{adjacency with the embedded CP}:

(11)\begin{enumerate}
\item *[\textit{Ranjit monəwa də gatta kiyəla} kiuwe] kiuwe?
 \begin{itemize}
 \item Ranjit \quad \textit{what} \quad \textit{q} \quad \text{buy.pst.nfoc} \quad \text{c} \quad \text{say.pst.foc}
 \end{itemize}
\item [\textit{Ranjit monəwa gatta kiyəla} \textit{də} kiuwe] kiuwe?
 \begin{itemize}
 \item Ranjit \quad \text{what} \quad \text{buy.pst.nfoc} \quad \text{c} \quad \textit{q} \quad \text{say.pst.foc}
 \end{itemize}
\end{enumerate}

\text{lit. ‘What did you say [that Ranjit bought t]?’}
Competition between different positions of $də$ in degree questions
Competition between different positions of *də* in degree questions

There is an independent constraint in Sinhala that bans focus particles from being adjacent to degree expressions.
Competition between different positions of $də$ in degree questions

There is an independent constraint in Sinhala that bans focus particles from being adjacent to degree expressions.

Cleft:

(12) ??John sinhəla [티카] tamai danne.

John Sinhala a.little part know.foc
Intended: ‘It is a little that John knows Sinhala.’
Competition between different positions of $də$ in degree questions

There is an independent constraint in Sinhala that bans focus particles from being adjacent to degree expressions.

Cleft:

(12) ??John $sīhəłə$ $[tıkək]$ $tamaɪ$ $danne$.
 John Sinhala a.little part know.foc
 Intended: ‘It is a little that John knows Sinhala.’

wh-questions:

(13) *$sīhələ$ $kochchərə$ $də$ $danne$?
 Sinhala how.much $də$ know.foc
 ‘How much Sinhala do you know?’
There is an independent constraint in Sinhala that bans focus particles from being adjacent to degree expressions.

Cleft:

(12) ??John sinhəla [tikak] tamai danne.
 John Sinhala a.little part know.foc
 Intended: ‘It is a little that John knows Sinhala.’

wh-questions:

(13) *siŋhəla kochchəra də danne?
 Sinhala how.much də know.foc
 ‘How much Sinhala do you know?’

(14) siŋhəla kochchəra dannəwa də?
 Sinhala how.much know.nfoc də
 ‘How much Sinhala do you know?’
Competition between different positions of \(d \) in degree questions

When \(kochch \) \(\rightarrow \) 'how much' is in a question, \(d \) requires adjacency with the island!

(15) a. \[\text{Siñhálā} \ kochch \ \text{how.much} \ d \text{ا} \text{know.npst.inf} \ \text{lam} \ \text{}\text{child-indef} \ \text{aawē?} \ \text{come.pst.foc} \]

b. * \[\text{Siñhálā} \ kochch \ \text{how.much} \ \text{know.npst.inf} \ \text{lam} \ \text{}\text{child-indef} \ \text{aawē} \ \text{come.pst.nfoc} \]

'How much did \[\text{a child that knows Siñhálā} \text{t} \] come?'

When \(kochch \) \(\rightarrow \) 'how much' is in an island, \(d \) requires adjacency with the island!

(16) a. Ranjit \[\text{Ranjit} \ \text{John} \ \text{Siñhálā} \ \text{kochch} \ \text{how.much} \ \text{\text{wa} know.npst.fin} \ \text{\text{kiuwe?} \ say.pst.foc} \]

b. * Ranjit \[\text{Ranjit} \ \text{John} \ \text{Siñhálā} \ \text{kochch} \ \text{how.much} \ \text{\text{wa} know.npst.fin} \ \text{\text{kiuwa} say.npst.nfoc} \ \text{?} \]

'How much did Ranjit say \[\text{John knows Siñhálā} \text{t} \]?'

Closeness constraint: \(d \) is restricted to positions that are as close to the \(\text{wh} \)-word as possible.
Competition between different positions of \(də \) in degree questions

When \textit{kochcḥrə} ‘how much’ is in an island, \(də \) requires \textbf{adjacency with the island!}

(15) a. \([\text{siñhələ kochcḥrə danna laməj-ek}] də aawe?\)
 Sinhala how.much know.npst.inf child-indef q come.pst.foc

 ‘How much did [a child that knows Sinhala t] come?’

 b. \(*[\text{siñhələ kochcḥrə danna laməj-ek}] aawa də?\)
 Sinhala how.much know.npst.inf child-indef come.pst.nfoc q
Competition between different positions of $d\emptyset$ in degree questions

When $kochch\text{\textacUTE}r\text{\textaUTE}$ ‘how much’ is in an island, $d\emptyset$ requires adjacency with the island!

(15) a. $[si\text{\textaUTE}h\text{\textaUTE}l\text{\textaUTE}a\ kochch\text{\textaUTE}r\text{\textaUTE}r\text{\textaUTE} danna\ lam\text{\textaUTE}j-ek] \ d\emptyset \ aawe?$
Sinhala how.much know.npst.inf child-indef q come.pst.foc

b. *$[si\text{\textaUTE}h\text{\textaUTE}l\text{\textaUTE}a\ kochch\text{\textaUTE}r\text{\textaUTE}r\text{\textaUTE} danna\ lam\text{\textaUTE}j-ek] \ aawa\ d\emptyset$?
Sinhala how.much know.npst.inf child-indef come.pst.nfoc q

‘How much did [a child that knows Sinhala t] come?’

When $kochch\text{\textacUTE}r\text{\textaUTE}$ ‘how much’ is in the embedded CP of a long-distance question, $d\emptyset$ requires adjacency with the embedded CP!

(16) a. $Ranjit \ [John \ si\text{\textaUTE}h\text{\textaUTE}l\text{\textaUTE}a\ kochch\text{\textaUTE}r\text{\textaUTE}r\text{\textaUTE} danna\wa\ \ kij\text{\textaUTE}la] \ d\emptyset \ kiuwe?$
Ranjit John Sinhala how.much know.npst.fin c q say.pst.foc

b. *$Ranjit \ [John \ si\text{\textaUTE}h\text{\textaUTE}l\text{\textaUTE}a\ kochch\text{\textaUTE}r\text{\textaUTE}r\text{\textaUTE} danna\wa\ \ kij\text{\textaUTE}la] \ kiuwa\ d\emptyset$?
Ranjit John Sinhala how.much know.npst.fin c say.npst.nfoc q

‘How much did Ranjit say [John knows Sinhala t]?’
Competition between different positions of \(d \alpha \) in degree questions

When \textit{kochchərə} ‘how much’ is in an island, \(d \alpha \) requires \textbf{adjacency with the island}!

(15) a. \[\text{Sinhala} \text{ how.much} \text{ know.npst.inf} \text{ child-indef} \text{ q} \text{ come.pst.foc} \]
 \[\text{[sɨɲhələ} \text{kochchərə} \text{ danna} \text{ laməj-ek]} \text{ də} \text{ aawe?} \]
 ‘How much did [a child that knows Sinhala t] come?’

When \textit{kochchərə} ‘how much’ is in the embedded CP of a long-distance question, \(d \alpha \) requires \textbf{adjacency with the embedded CP}!

(16) a. \[\text{Ranjit} \text{ John} \text{ Sinhala} \text{ how.much} \text{ know.npst.fin} \text{ c} \text{ q} \text{ say.pst.foc} \]
 \[\text{[John} \text{sɨɲhələ} \text{kochchərə} \text{ danna} \text{ kɨjəla]} \text{ də} \text{ kiuwe?} \]
 ‘How much did Ranjit say [John knows Sinhala t]?’

\textbf{Closeness constraint:} Sinhala \(d \alpha \) is restricted to positions that are as close to the \textit{wh}-word as possible.
Previous accounts
All accounts of Sinhala wh-questions recognize the island sensitivity of \(də \) and assume that non-sentence-final \(də \) moves covertly.
All accounts of Sinhala *wh*-questions recognize the island sensitivity of *də* and assume that non-sentence-final *də* moves covertly.

(17) a. *[monəwa də gattə kenaə] aawe?]*
 what q buy.pst.inf person come.pst.foc

b. *[monəwa gattə kenaə] də aawe?]*
 what buy.pst.inf person q come.pst.foc
 lit. ‘What did a person [that bought t] came?’
All accounts of Sinhala wh-questions recognize the island sensitivity of \(də \) and assume that non-sentence-final \(də \) moves covertly.

(17)
\[\text{a. } \ast [\text{monəwa } də \text{ gattə } \text{ kenaq}] \text{ aaweq?} \]
\[\text{what } q \text{ buy.pst.inf person come.pst.foc} \]

\[\text{b. } [\text{monəwa } \text{gattə } \text{kenaq}] də \text{ aaweq?} \]
\[\text{what } \text{buy.pst.inf person } q \text{ come.pst.foc} \]
\[\text{lit. ‘What did a person [that bought t] came?’} \]

Sentence-final \(də \) is derived by
- overt movement to C (Hagstrom 1998; Kishimoto 2005), or
- base-generation at a sentence-final position (Morita 2019)
Problem

But they don’t capture the competition between different positions of *də*.
But they don’t capture the competition between different positions of \(d\).

(18) \(\text{si}gh\text{h}l\text{a}kochch\text{h}r\text{e}dann\text{w}a\ d\text{h}? \)
Sinhala how.much know.nfoc \(d\text{h} \)
‘How much Sinhala do you know?’
Problem

But they don’t capture the competition between different positions of *də*.

(18)
\[\text{sighələ kochchərə dannəwa də?}\]
Sinhala how.much know.nfoc də
‘How much Sinhala do you know?’

(19)
a. \[\text{[sighələ kochchərə dannə laməj-ek] də aawe?}\]
Sinhala how.much know.npst.inf child-indef q come.pst.foc

b. \[\text{* [sighələ kochchərə dannə laməj-ek] aawa də?}\]
Sinhala how.much know.npst.inf child-indef come.pst.nfoc q
‘How much did [a child that knows Sinhala t] come?’
But they don’t capture the competition between different positions of $də$.

(18) $sighəla kochchərə dannəwa də?$
Sinhala how.much know.nfoc də
‘How much Sinhala do you know?’

(19) a. $[sighəla kochchərə dannə laməj-ek] də aawe?$
Sinhala how.much know.npst.inf child-indef q come.pst.foc
b. $*[sighəla kochchərə dannə laməj-ek] aawa də?$
Sinhala how.much know.npst.inf child-indef come.pst.nfoc q
‘How much did [a child that knows Sinhala t] come?’

Under the existing accounts, it’s not clear how the operation that derives (19a) (i.e. covert movement) blocks the operation that derives (19b) (i.e. overt movement or base-generation).
A phase-based movement analysis of Sinhala wh-questions
Ingredient 1: Merge ASAP

...
Ingredient 1: Merge ASAP

$d\emptyset$ is merged with the wh-words if it can; if not, it is merged with the lowest maximal projection containing the wh-word (cf. also Erlewine 2017).
Ingredient 1: Merge ASAP

$də$ is merged with the wh-words if it can; if not, it is merged with the lowest maximal projection containing the wh-word (cf. also Erlewine 2017).

I propose that there’s an independent ban in Sinhala on merging focus particles with degree words.
Ingredient 1: Merge ASAP

\[d∅ \] is merged with the \textit{wh}-words if it can; if not, it is merged with the lowest maximal projection containing the \textit{wh}-word (cf. also Erlewine 2017).

I propose that there’s an independent ban in Sinhala on merging focus particles with degree words.

Non-degree questions:

\[
\begin{array}{c}
\text{vP} \\
\text{Chitra} \\
\text{where} \quad d∅ \\
\text{go}
\end{array}
\]
Ingredient 1: Merge ASAP

\(də \) is merged with the *wh*-words if it can; if not, it is merged with the lowest maximal projection containing the *wh*-word (cf. also Erlewine 2017).

I propose that there’s an independent ban in Sinhala on merging focus particles with degree words.

Non-degree questions:

\[vP \]
\[Chitra \]
\[where \quad də \quad go \]

Degree questions:

\[vP \]
\[you \]
\[how.much \]
\[Sinhala \quad know \]
\[də \]
Ingredient 2: Movement driven by *də*'s formal inadequacy
Ingredient 2: Movement driven by \textit{də}'s formal inadequacy

\textit{də} has \textbf{an uninterpretable Foc feature} that can be checked off by \textit{Foc}^0.
Ingredient 2: Movement driven by $d\theta$’s formal inadequacy

$d\theta$ has an uninterpretable Foc feature that can be checked off by Foc^0.

Upon the completion of each phase, $[u\text{Foc}]$ forces $d\theta$ to move to the phasal edge to be accessible to a potential feature-checker (Bošković 2007’s formulation of Last Resort).
Ingredient 2: Movement driven by \(d\emptyset \)'s formal inadequacy

\(d\emptyset \) has an uninterpretable Foc feature that can be checked off by Foc\(^0\).

Upon the completion of each phase, [uFoc] forces \(d\emptyset \) to move to the phasal edge to be accessible to a potential feature-checker (Bošković 2007’s formulation of Last Resort).

Illustration: Suppose XP is a phase and Foc\(^0\) has not entered the derivation yet:

![Diagram](attachment:tree.png)

...where \(d\emptyset[uFoc] \)...
Ingredient 2: Movement driven by *də*'s formal inadequacy

də has an uninterpretable Foc feature that can be checked off by Foc\(^0\).

Upon the completion of each phase, [uFoc] forces *də* to move to the phasal edge to be accessible to a potential feature-checker (Bošković 2007’s formulation of Last Resort).

Illustration: Suppose XP is a phase and Foc\(^0\) has not entered the derivation yet:

\[
\text{XP} \quad \text{YP} \quad ... \quad \text{XP} \quad \text{YP} \quad \text{...where } də_{[uFoc]} ...
\]

\[
\text{X} \quad \text{Without movement, [uFoc] will never be checked, and the derivation will crash immediately!}
\]
Ingredient 2: Movement driven by \(d\emptyset \)'s formal inadequacy

\(d\emptyset \) has an uninterpretable Foc feature that can be checked off by \(\text{Foc}^0 \).

Upon the completion of each phase, \([u\text{Foc}]\) forces \(d\emptyset \) to move to the phasal edge to be accessible to a potential feature-checker (Bošković 2007’s formulation of Last Resort).

Illustration: Suppose XP is a phase and Foc\(^0\) has not entered the derivation yet:

\[\begin{align*}
\text{XP} & \quad \text{YP} \quad \text{X} \\
\ldots \text{where } d\emptyset_{[u\text{Foc}]} \ldots
\end{align*}\]

\[\begin{align*}
\text{XP} & \quad \text{YP} \quad \text{X} \\
\ldots \text{where } t \ldots
\end{align*}\]

\(\times \) Without movement, \([u\text{Foc}]\) will never be checked, and the derivation will crash immediately!

\(\checkmark \) Move to be accessible to a potential feature-checker!
Ingredient 2: Movement driven by *da*'s formal inadequacy

E.g. Movement from CP and NP phases
Ingredient 2: Movement driven by \(d\)'s formal inadequacy

E.g. Movement from CP and NP phases

(20) Embedded CPs

\[
[CP \text{ Ranjit [monəwa } t]\text{ gatta } kiyəla] \text{ } də kiuwe? \\
\text{Ranjit what buy.pst.nfoc c q say.pst.foc}
\]

lit. ‘What did you say [that Ranjit bought \(t\)]?’
Ingredient 2: Movement driven by də’s formal inadequacy

E.g. Movement from CP and NP phases

(20) Embedded CPs

\[\text{[CP Ranjit [monəwa t] gatta kiyəla] də kiuwe?} \]
Ranjit \ what buy.pst.nfoc c q say.pst.foc
lit. ‘What did you say [that Ranjit bought t]?’

(21) NP islands

\[\text{[NP [monəwa t] gattə kena] də aawe?} \]
what buy.pst.inf person q come.pst.foc
lit. ‘What did a person [that bought t] came?’
Ingredient 2: Movement driven by də’s formal inadequacy

E.g. Movement from CP and NP phases

(20) Embedded CPs

\[
[\text{CP} \quad \text{Ranjit} \quad \text{[monəwa t] gatta} \quad \text{kiyəla} \quad \text{də} \quad \text{kiuwe}?] \nonumber
\]

\[
\text{Ranjit \quad what \quad buy.pst.nfoc \quad c \quad q \quad say.pst.foc}
\]

lit. ‘What did you say [that Ranjit bought t]?’

(21) NP islands

\[
[\text{NP} \quad \text{[monəwa t] gattə} \quad \text{kenaa} \quad \text{də} \quad \text{aawe}?] \nonumber
\]

\[
\text{what \quad buy.pst.inf \quad person \quad q \quad come.pst.foc}
\]

lit. ‘What did a person [that bought t] came?’

But vP is also a phase. Why does də never show up next to vP? (though cf. Keine and Zeijlstra 2021 for the view that vP is not a phase)
Ingredient 3: Contextual phasehood (Bošković 2014)

A phase is the highest phrase in an extended projection. Its phasal status is 'activated' only when a higher phasal head is merged into the structure (cf. Chomsky 2001). So, \(vP\) gets activated as a phase only when the highest phrase in the next extended projection is merged. Which phrase is it?

Sinhala has a split CP (Kishimoto 2005, 2018):

(a) Ranjit [Chitra aawa came.nfoc] \(\text{æhuwa.}\)

(b) \([\text{ForceP} [\text{FocP} \ldots \text{Foc}]]\)\(\text{nædd}\)\(\text{kij}\)\(\text{la}\)

Consequence: The phasehood of \(vP\) is activated only when Compl is merged!

\[
\begin{align*}
\text{vP} & \quad \text{VP} \\
\text{v} & \quad \text{FocP} \\
\text{TP} & \quad \text{vP} \\
\text{FocP} & \quad \text{ComplP}
\end{align*}
\]
A phase is the highest phrase in an extended projection. Its phasal status is ‘activated’ only when a higher phasal head is merged into the structure (cf. Chomsky 2001).
Ingredient 3: Contextual phasehood (Bošković 2014)

A phase is the highest phrase in an extended projection. Its phasal status is ‘activated’ only when a higher phasal head is merged into the structure (cf. Chomsky 2001).

So, vP gets activated as a phase only when the highest phrase in the next extended projection is merged. Which phrase is it?

Sinhala has a split CP (Kishimoto 2005, 2018):

(22) a. Ranjit [Chitra aawa came.nfoc @ nædd @ kij @ æhuwa.]
 'Ranjit asked whether Chitra came.' (Kishimoto 2018)

b. ComplP [ForceP [FocP [... Foc] d @ nædd @ kij @ la]]

Consequence: The phasehood of vP is activated only when Compl is merged!
A phase is the highest phrase in an extended projection. Its phasal status is ‘activated’ only when a higher phasal head is merged into the structure (cf. Chomsky 2001).

So, vP gets activated as a phase only when the highest phrase in the next extended projection is merged. Which phrase is it?

Sinhala has a split CP (Kishimoto 2005, 2018):
A phase is the highest phrase in an extended projection. Its phasal status is ‘activated’ only when a higher phasal head is merged into the structure (cf. Chomsky 2001).

So, vP gets activated as a phase only when the highest phrase in the next extended projection is merged. Which phrase is it?

Sinhala has a split CP (Kishimoto 2005, 2018):

(22)
\begin{align*}
\text{a. } & \text{Ranjit} \ [ext{Chitra aawa dənæddə kijela}] \ æhuwa.
\text{Ranjit Chitra came.nfoc whether that asked.nfoc}
\text{‘Ranjit asked whether Chitra came.’} \quad \text{(Kishimoto 2018)}
\end{align*}

\begin{align*}
\text{b. } & \ [\text{ComplP} \ [\text{ForceP} \ [\text{FocP} \ [... \ Foc] \ dənæddə] \ kijela]]
\end{align*}
Ingredient 3: Contextual phasehood (Bošković 2014)

A phase is the highest phrase in an extended projection. Its phasal status is ‘activated’ only when a higher phasal head is merged into the structure (cf. Chomsky 2001).

So, vP gets activated as a phase only when the highest phrase in the next extended projection is merged. Which phrase is it?

Sinhala has a split CP (Kishimoto 2005, 2018):

(22)
\[\text{Ranjit [Chitra aawa \textit{d\^e\textit{n\^e\textit{d\^e\textit{o}} kij\textit{\textendash l\textendash a]} \textit{\^e\textit{h\textendash u\textendash w\textendash a}.} \text{Ranjit Chitra came.nfoc whether that asked.nfoc ‘Ranjit asked whether Chitra came.’} \text{ (Kishimoto 2018)} \]

\[\text{b. } [\text{ComplP [ForceP [FocP [...] Foc] \textit{d\^e\textit{n\^e\textit{d\^e\textit{o}}] kij\textit{\textendash l\textendash a}]}] \]

Consequence: The phasehood of vP is activated only when Compl is merged!
Ingredient 3: Contextual phasehood (Bošković 2014)

A phase is the highest phrase in an extended projection. Its phasal status is ‘activated’ only when a higher phasal head is merged into the structure (cf. Chomsky 2001).

So, vP gets activated as a phase only when the highest phrase in the next extended projection is merged. Which phrase is it?

Sinhala has a split CP (Kishimoto 2005, 2018):

(22) a. Ranjit [Chitra aawa dənæddə kijəla] æhuwa.
 Ranjit Chitra came.nfoc whether that asked.nfoc
 ‘Ranjit asked whether Chitra came.’ (Kishimoto 2018)

b. [ComplP [ForceP [FocP [...] Foc] dənæddə] kijəla]

Consequence: The phasehood of vP is activated only when Compl is merged!
Ingredient 3: Contextual phasehood (Bošković 2014)

A phase is the highest phrase in an extended projection. Its phasal status is ‘activated’ only when a higher phasal head is merged into the structure (cf. Chomsky 2001).

So, vP gets activated as a phase only when the highest phrase in the next extended projection is merged. Which phrase is it?

Sinhala has a split CP (Kishimoto 2005, 2018):

(22) a. *Ranjit [Chitra aawa dənæddə kijəla] æhuwa.*
Ranjit Chitra came.nfoc whether that asked.nfoc
‘Ranjit asked whether Chitra came.’ (Kishimoto 2018)

b. [ComplP [ForceP [FocP […] Foc] dənæddə] kijəla]

Consequence: The phasehood of vP is activated only when Compl is merged!
Ingredient 3: Contextual phasehood (Bošković 2014)

A phase is the highest phrase in an extended projection. Its phasal status is ‘activated’ only when a higher phasal head is merged into the structure (cf. Chomsky 2001).

So, vP gets activated as a phase only when the highest phrase in the next extended projection is merged. Which phrase is it?

Sinhala has a split CP (Kishimoto 2005, 2018):

(22) a. \textit{Ranjit [Chitra aawā dənæddə kijāla] æhuwa.}
 Ranjit Chitra came.nfoc whether that asked.nfoc ‘Ranjit asked whether Chitra came.’ \hspace{1cm} (Kishimoto 2018)

Consequence: \textit{The phasehood of vP is activated only when Compl is merged!}
Deriving simple non-degree questions

(23) *Chitra kohe da giyee?*
Chitra where q went.foc
‘Where did Chitra go?’
Deriving simple non-degree questions

(23) *Chitra kohe da giyee?*

Chitra where q went.foc

‘Where did Chitra go?’
Deriving simple non-degree questions

(23) \textit{Chitra kohe da giyee?}

\textit{Chitra where q went.foc}

‘Where did Chitra go?’

\(\nu P\) is not a phase when Foc is merged. So, Agree is possible.
Deriving simple degree questions

(24) \(sîghə.sap.bəkchərə \ danəwə\ də? \)
Sinhala how.much know.nfoc də
‘How much Sinhala do you know?’
Deriving simple degree questions

(24) *siṅhəḷa koṭchəɾə dənəwə də?*
Sinhala how.much know.nfoc də
‘How much Sinhala do you know?’
Deriving simple degree questions

(24) \textit{sīhələ kochchərə dannəwə dəʔ?}
Sinhala how.much know.nfoc dəʔ
‘How much Sinhala do you know?’

SUFFIXATION of the focus morphology is interrupted by \textit{də}. So, the non-focus morphology gets realized as the default option.
Deriving long-distance degree questions

(25) *Ranjit [John *siṅhālə kochcharə dənəwə kɨjəla] də kiuwe?*

Ranjit John Sinhala how.much know.npst.fin c q say.pst.foc

‘How much did Ranjit say [John knows Sinhala t]?’
Deriving long-distance degree questions

(25) *Ranjit [John sinhələ kochchərə dannəwa kijəla] də kiuwe?*

Ranjit John Sinhala how.much know.npst.fin c q say.pst.foc

‘How much did Ranjit say [John knows Sinhala t]?’
Deriving long-distance degree questions

(25) *Ranjit [John *siṅhala kochchāra dannaṁwa *kijāla] də kiuwe?*
Ranjit John Sinhala how.much know.npst.fin c q say.pst.foc
‘How much did Ranjit say [John knows Sinhala t]?’

- Matrix v activates the phasal status of ComplP.
Deriving long-distance degree questions

Ranjit John Sinhala how.much know.npst.fin c q say.pst.foc

‘How much did Ranjit say [John knows Sinhala t]?’

- Matrix v activates the phasal status of ComplP.
- When Foc is merged, matrix vP isn’t a phase. So, Agree is possible.
Deriving long-distance degree questions

(25) \[\text{Ranjit [John singhala kochchara dannowa kijala] də kiuwe?} \]
Ranjit John Sinhala how.much know.npst.fin c q say.pst.foc
‘How much did Ranjit say [John knows Sinhala t]?’

- Matrix \(v \) activates the phasal status of ComplP.
- When Foc is merged, matrix \(vP \) isn’t a phase. So, Agree is possible.

After Agree with Foc, \(də \) has no motivation to move further. So, the sentence-final \(də \) is impossible.
Conclusion
Sinhala Q-particle $də$ is subject to the constraint that it be as close to the *wh*-word as possible.
Sinhala Q-particle $də$ is subject to the constraint that it be as close to the *wh*-word as possible.

- Key observation comes from **degree questions**, where a non-sentence-final position of $də$ (adjacent to NP-islands, embedded CPs) blocks $də$ from appearing sentence-finally.
Sinhala Q-particle \(d\) is subject to the constraint that it be as close to the *wh*-word as possible.

- Key observation comes from **degree questions**, where a non-sentence-final position of \(d\) (adjacent to NP-islands, embedded CPs) blocks \(d\) from appearing sentence-finally.

- The competition between different positions of \(d\) follows from a phase-based derivation of *wh*-questions, where the feature of \(d\) is checked as soon as it can be.
Sinhala Q-particle \(d\) is subject to the constraint that it be as close to the \(wh\)-word as possible.

- Key observation comes from degree questions, where a non-sentence-final position of \(d\) (adjacent to NP-islands, embedded CPs) blocks \(d \) from appearing sentence-finally.

- The competition between different positions of \(d \) follows from a phase-based derivation of \(wh\)-questions, where the feature of \(d \) is checked as soon as it can be.

- Since Sinhala \(wh\)-questions are also focus constructions, the finding supports the argument that (some) focus particles are subject to the closeness constraint (Erlewine 2017).
Thank you!

Many thanks to Dilshara Jayasuriya for patiently sharing her intuitions with me. For discussions and comments, I am indebted to Željko Bošković, Adrian Stegovec, Magdalena Kaufmann, Teruyuki Mizuno, Hadas Kotek, Pasha Koval, Jason Merchant, Yoshiki Fujiwara, and the audiences at USC Syntax+ (February 2021) and UConn LingLunch (March 2021). All errors are mine.

References II

